Symmetries of the One-Dimensional Fokker–Planck–Kolmogorov Equation with a Nonlocal Quadratic Nonlinearity
The one-dimensional Fokker–Planck–Kolmogorov equation with a special type of nonlocal quadratic nonlinearity is represented as a consistent system of differential equations, including a dynamical system describing the evolution of the moments of the unknown function. Lie symmetries are found for the...
Gespeichert in:
Veröffentlicht in: | Russian physics journal 2017-06, Vol.60 (2), p.284-291 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 291 |
---|---|
container_issue | 2 |
container_start_page | 284 |
container_title | Russian physics journal |
container_volume | 60 |
creator | Levchenko, E. A. Trifonov, A. Yu Shapovalov, A. V. |
description | The one-dimensional Fokker–Planck–Kolmogorov equation with a special type of nonlocal quadratic nonlinearity is represented as a consistent system of differential equations, including a dynamical system describing the evolution of the moments of the unknown function. Lie symmetries are found for the consistent system using methods of classical group analysis. An example of an invariant-group solution obtained with an additional integral constraint imposed on the system is considered. |
doi_str_mv | 10.1007/s11182-017-1073-z |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_1906174885</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A498129655</galeid><sourcerecordid>A498129655</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-90793d540ada625dbe4c894edb849bff59cff739727593f15aa48670e8551eb83</originalsourceid><addsrcrecordid>eNp1kU1OwzAUhCMEEuXnAOwisQ7YSRzbS1R-BaIgYG25znNrmtitnYLaFXfghpwEl7Bgg7zwaDzf07MmSY4wOsEI0dOAMWZ5hjDNMKJFtt5KBphEwfOcbUeNqjJjjNHdZC-EV4QiVdFBYp9WbQudNxBSp9NuCunIQnZuWrDBOCub9NLNZuC_Pj4fGmnVLIpb17Ru4rx7Sy8WS9nFXPpuumkq03tnG6ci9biUtY9P6scyFqQ33eog2dGyCXD4e-8nL5cXz8Pr7G50dTM8u8tUQUiXcUR5UZMSyVpWOanHUCrGS6jHrORjrQlXWtOC05wSXmhMpCxZRREwQjCMWbGfHPdz594tlhA68eqWPv4mCMxRhWnJGImpkz41kQ0IY7XrvFTx1NAa5SxoE_2zkjOc84psANwDyrsQPGgx96aVfiUwEpseRN-DiD2ITQ9iHZm8Z0LM2gn4P6v8C30Dx1-Oag</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1906174885</pqid></control><display><type>article</type><title>Symmetries of the One-Dimensional Fokker–Planck–Kolmogorov Equation with a Nonlocal Quadratic Nonlinearity</title><source>SpringerLink Journals - AutoHoldings</source><creator>Levchenko, E. A. ; Trifonov, A. Yu ; Shapovalov, A. V.</creator><creatorcontrib>Levchenko, E. A. ; Trifonov, A. Yu ; Shapovalov, A. V.</creatorcontrib><description>The one-dimensional Fokker–Planck–Kolmogorov equation with a special type of nonlocal quadratic nonlinearity is represented as a consistent system of differential equations, including a dynamical system describing the evolution of the moments of the unknown function. Lie symmetries are found for the consistent system using methods of classical group analysis. An example of an invariant-group solution obtained with an additional integral constraint imposed on the system is considered.</description><identifier>ISSN: 1064-8887</identifier><identifier>EISSN: 1573-9228</identifier><identifier>DOI: 10.1007/s11182-017-1073-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Analysis ; Condensed Matter Physics ; Differential equations ; Elementary Particle Physics and Field Theory ; Evolution ; Fokker-Planck equation ; Hadrons ; Heavy Ions ; Lasers ; Mathematical analysis ; Mathematical and Computational Physics ; Nonlinearity ; Nuclear Physics ; Optical Devices ; Optics ; Photonics ; Physics ; Physics and Astronomy ; Theoretical</subject><ispartof>Russian physics journal, 2017-06, Vol.60 (2), p.284-291</ispartof><rights>Springer Science+Business Media New York 2017</rights><rights>COPYRIGHT 2017 Springer</rights><rights>Copyright Springer Science & Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-90793d540ada625dbe4c894edb849bff59cff739727593f15aa48670e8551eb83</citedby><cites>FETCH-LOGICAL-c355t-90793d540ada625dbe4c894edb849bff59cff739727593f15aa48670e8551eb83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11182-017-1073-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11182-017-1073-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Levchenko, E. A.</creatorcontrib><creatorcontrib>Trifonov, A. Yu</creatorcontrib><creatorcontrib>Shapovalov, A. V.</creatorcontrib><title>Symmetries of the One-Dimensional Fokker–Planck–Kolmogorov Equation with a Nonlocal Quadratic Nonlinearity</title><title>Russian physics journal</title><addtitle>Russ Phys J</addtitle><description>The one-dimensional Fokker–Planck–Kolmogorov equation with a special type of nonlocal quadratic nonlinearity is represented as a consistent system of differential equations, including a dynamical system describing the evolution of the moments of the unknown function. Lie symmetries are found for the consistent system using methods of classical group analysis. An example of an invariant-group solution obtained with an additional integral constraint imposed on the system is considered.</description><subject>Analysis</subject><subject>Condensed Matter Physics</subject><subject>Differential equations</subject><subject>Elementary Particle Physics and Field Theory</subject><subject>Evolution</subject><subject>Fokker-Planck equation</subject><subject>Hadrons</subject><subject>Heavy Ions</subject><subject>Lasers</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Nonlinearity</subject><subject>Nuclear Physics</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Theoretical</subject><issn>1064-8887</issn><issn>1573-9228</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kU1OwzAUhCMEEuXnAOwisQ7YSRzbS1R-BaIgYG25znNrmtitnYLaFXfghpwEl7Bgg7zwaDzf07MmSY4wOsEI0dOAMWZ5hjDNMKJFtt5KBphEwfOcbUeNqjJjjNHdZC-EV4QiVdFBYp9WbQudNxBSp9NuCunIQnZuWrDBOCub9NLNZuC_Pj4fGmnVLIpb17Ru4rx7Sy8WS9nFXPpuumkq03tnG6ci9biUtY9P6scyFqQ33eog2dGyCXD4e-8nL5cXz8Pr7G50dTM8u8tUQUiXcUR5UZMSyVpWOanHUCrGS6jHrORjrQlXWtOC05wSXmhMpCxZRREwQjCMWbGfHPdz594tlhA68eqWPv4mCMxRhWnJGImpkz41kQ0IY7XrvFTx1NAa5SxoE_2zkjOc84psANwDyrsQPGgx96aVfiUwEpseRN-DiD2ITQ9iHZm8Z0LM2gn4P6v8C30Dx1-Oag</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Levchenko, E. A.</creator><creator>Trifonov, A. Yu</creator><creator>Shapovalov, A. V.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170601</creationdate><title>Symmetries of the One-Dimensional Fokker–Planck–Kolmogorov Equation with a Nonlocal Quadratic Nonlinearity</title><author>Levchenko, E. A. ; Trifonov, A. Yu ; Shapovalov, A. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-90793d540ada625dbe4c894edb849bff59cff739727593f15aa48670e8551eb83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Analysis</topic><topic>Condensed Matter Physics</topic><topic>Differential equations</topic><topic>Elementary Particle Physics and Field Theory</topic><topic>Evolution</topic><topic>Fokker-Planck equation</topic><topic>Hadrons</topic><topic>Heavy Ions</topic><topic>Lasers</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Nonlinearity</topic><topic>Nuclear Physics</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Levchenko, E. A.</creatorcontrib><creatorcontrib>Trifonov, A. Yu</creatorcontrib><creatorcontrib>Shapovalov, A. V.</creatorcontrib><collection>CrossRef</collection><jtitle>Russian physics journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Levchenko, E. A.</au><au>Trifonov, A. Yu</au><au>Shapovalov, A. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Symmetries of the One-Dimensional Fokker–Planck–Kolmogorov Equation with a Nonlocal Quadratic Nonlinearity</atitle><jtitle>Russian physics journal</jtitle><stitle>Russ Phys J</stitle><date>2017-06-01</date><risdate>2017</risdate><volume>60</volume><issue>2</issue><spage>284</spage><epage>291</epage><pages>284-291</pages><issn>1064-8887</issn><eissn>1573-9228</eissn><abstract>The one-dimensional Fokker–Planck–Kolmogorov equation with a special type of nonlocal quadratic nonlinearity is represented as a consistent system of differential equations, including a dynamical system describing the evolution of the moments of the unknown function. Lie symmetries are found for the consistent system using methods of classical group analysis. An example of an invariant-group solution obtained with an additional integral constraint imposed on the system is considered.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11182-017-1073-z</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1064-8887 |
ispartof | Russian physics journal, 2017-06, Vol.60 (2), p.284-291 |
issn | 1064-8887 1573-9228 |
language | eng |
recordid | cdi_proquest_journals_1906174885 |
source | SpringerLink Journals - AutoHoldings |
subjects | Analysis Condensed Matter Physics Differential equations Elementary Particle Physics and Field Theory Evolution Fokker-Planck equation Hadrons Heavy Ions Lasers Mathematical analysis Mathematical and Computational Physics Nonlinearity Nuclear Physics Optical Devices Optics Photonics Physics Physics and Astronomy Theoretical |
title | Symmetries of the One-Dimensional Fokker–Planck–Kolmogorov Equation with a Nonlocal Quadratic Nonlinearity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T00%3A26%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Symmetries%20of%20the%20One-Dimensional%20Fokker%E2%80%93Planck%E2%80%93Kolmogorov%20Equation%20with%20a%20Nonlocal%20Quadratic%20Nonlinearity&rft.jtitle=Russian%20physics%20journal&rft.au=Levchenko,%20E.%20A.&rft.date=2017-06-01&rft.volume=60&rft.issue=2&rft.spage=284&rft.epage=291&rft.pages=284-291&rft.issn=1064-8887&rft.eissn=1573-9228&rft_id=info:doi/10.1007/s11182-017-1073-z&rft_dat=%3Cgale_proqu%3EA498129655%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1906174885&rft_id=info:pmid/&rft_galeid=A498129655&rfr_iscdi=true |