Symmetries of the One-Dimensional Fokker–Planck–Kolmogorov Equation with a Nonlocal Quadratic Nonlinearity

The one-dimensional Fokker–Planck–Kolmogorov equation with a special type of nonlocal quadratic nonlinearity is represented as a consistent system of differential equations, including a dynamical system describing the evolution of the moments of the unknown function. Lie symmetries are found for the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Russian physics journal 2017-06, Vol.60 (2), p.284-291
Hauptverfasser: Levchenko, E. A., Trifonov, A. Yu, Shapovalov, A. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 291
container_issue 2
container_start_page 284
container_title Russian physics journal
container_volume 60
creator Levchenko, E. A.
Trifonov, A. Yu
Shapovalov, A. V.
description The one-dimensional Fokker–Planck–Kolmogorov equation with a special type of nonlocal quadratic nonlinearity is represented as a consistent system of differential equations, including a dynamical system describing the evolution of the moments of the unknown function. Lie symmetries are found for the consistent system using methods of classical group analysis. An example of an invariant-group solution obtained with an additional integral constraint imposed on the system is considered.
doi_str_mv 10.1007/s11182-017-1073-z
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_1906174885</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A498129655</galeid><sourcerecordid>A498129655</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-90793d540ada625dbe4c894edb849bff59cff739727593f15aa48670e8551eb83</originalsourceid><addsrcrecordid>eNp1kU1OwzAUhCMEEuXnAOwisQ7YSRzbS1R-BaIgYG25znNrmtitnYLaFXfghpwEl7Bgg7zwaDzf07MmSY4wOsEI0dOAMWZ5hjDNMKJFtt5KBphEwfOcbUeNqjJjjNHdZC-EV4QiVdFBYp9WbQudNxBSp9NuCunIQnZuWrDBOCub9NLNZuC_Pj4fGmnVLIpb17Ru4rx7Sy8WS9nFXPpuumkq03tnG6ci9biUtY9P6scyFqQ33eog2dGyCXD4e-8nL5cXz8Pr7G50dTM8u8tUQUiXcUR5UZMSyVpWOanHUCrGS6jHrORjrQlXWtOC05wSXmhMpCxZRREwQjCMWbGfHPdz594tlhA68eqWPv4mCMxRhWnJGImpkz41kQ0IY7XrvFTx1NAa5SxoE_2zkjOc84psANwDyrsQPGgx96aVfiUwEpseRN-DiD2ITQ9iHZm8Z0LM2gn4P6v8C30Dx1-Oag</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1906174885</pqid></control><display><type>article</type><title>Symmetries of the One-Dimensional Fokker–Planck–Kolmogorov Equation with a Nonlocal Quadratic Nonlinearity</title><source>SpringerLink Journals - AutoHoldings</source><creator>Levchenko, E. A. ; Trifonov, A. Yu ; Shapovalov, A. V.</creator><creatorcontrib>Levchenko, E. A. ; Trifonov, A. Yu ; Shapovalov, A. V.</creatorcontrib><description>The one-dimensional Fokker–Planck–Kolmogorov equation with a special type of nonlocal quadratic nonlinearity is represented as a consistent system of differential equations, including a dynamical system describing the evolution of the moments of the unknown function. Lie symmetries are found for the consistent system using methods of classical group analysis. An example of an invariant-group solution obtained with an additional integral constraint imposed on the system is considered.</description><identifier>ISSN: 1064-8887</identifier><identifier>EISSN: 1573-9228</identifier><identifier>DOI: 10.1007/s11182-017-1073-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Analysis ; Condensed Matter Physics ; Differential equations ; Elementary Particle Physics and Field Theory ; Evolution ; Fokker-Planck equation ; Hadrons ; Heavy Ions ; Lasers ; Mathematical analysis ; Mathematical and Computational Physics ; Nonlinearity ; Nuclear Physics ; Optical Devices ; Optics ; Photonics ; Physics ; Physics and Astronomy ; Theoretical</subject><ispartof>Russian physics journal, 2017-06, Vol.60 (2), p.284-291</ispartof><rights>Springer Science+Business Media New York 2017</rights><rights>COPYRIGHT 2017 Springer</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-90793d540ada625dbe4c894edb849bff59cff739727593f15aa48670e8551eb83</citedby><cites>FETCH-LOGICAL-c355t-90793d540ada625dbe4c894edb849bff59cff739727593f15aa48670e8551eb83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11182-017-1073-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11182-017-1073-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Levchenko, E. A.</creatorcontrib><creatorcontrib>Trifonov, A. Yu</creatorcontrib><creatorcontrib>Shapovalov, A. V.</creatorcontrib><title>Symmetries of the One-Dimensional Fokker–Planck–Kolmogorov Equation with a Nonlocal Quadratic Nonlinearity</title><title>Russian physics journal</title><addtitle>Russ Phys J</addtitle><description>The one-dimensional Fokker–Planck–Kolmogorov equation with a special type of nonlocal quadratic nonlinearity is represented as a consistent system of differential equations, including a dynamical system describing the evolution of the moments of the unknown function. Lie symmetries are found for the consistent system using methods of classical group analysis. An example of an invariant-group solution obtained with an additional integral constraint imposed on the system is considered.</description><subject>Analysis</subject><subject>Condensed Matter Physics</subject><subject>Differential equations</subject><subject>Elementary Particle Physics and Field Theory</subject><subject>Evolution</subject><subject>Fokker-Planck equation</subject><subject>Hadrons</subject><subject>Heavy Ions</subject><subject>Lasers</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Nonlinearity</subject><subject>Nuclear Physics</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Theoretical</subject><issn>1064-8887</issn><issn>1573-9228</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kU1OwzAUhCMEEuXnAOwisQ7YSRzbS1R-BaIgYG25znNrmtitnYLaFXfghpwEl7Bgg7zwaDzf07MmSY4wOsEI0dOAMWZ5hjDNMKJFtt5KBphEwfOcbUeNqjJjjNHdZC-EV4QiVdFBYp9WbQudNxBSp9NuCunIQnZuWrDBOCub9NLNZuC_Pj4fGmnVLIpb17Ru4rx7Sy8WS9nFXPpuumkq03tnG6ci9biUtY9P6scyFqQ33eog2dGyCXD4e-8nL5cXz8Pr7G50dTM8u8tUQUiXcUR5UZMSyVpWOanHUCrGS6jHrORjrQlXWtOC05wSXmhMpCxZRREwQjCMWbGfHPdz594tlhA68eqWPv4mCMxRhWnJGImpkz41kQ0IY7XrvFTx1NAa5SxoE_2zkjOc84psANwDyrsQPGgx96aVfiUwEpseRN-DiD2ITQ9iHZm8Z0LM2gn4P6v8C30Dx1-Oag</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Levchenko, E. A.</creator><creator>Trifonov, A. Yu</creator><creator>Shapovalov, A. V.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170601</creationdate><title>Symmetries of the One-Dimensional Fokker–Planck–Kolmogorov Equation with a Nonlocal Quadratic Nonlinearity</title><author>Levchenko, E. A. ; Trifonov, A. Yu ; Shapovalov, A. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-90793d540ada625dbe4c894edb849bff59cff739727593f15aa48670e8551eb83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Analysis</topic><topic>Condensed Matter Physics</topic><topic>Differential equations</topic><topic>Elementary Particle Physics and Field Theory</topic><topic>Evolution</topic><topic>Fokker-Planck equation</topic><topic>Hadrons</topic><topic>Heavy Ions</topic><topic>Lasers</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Nonlinearity</topic><topic>Nuclear Physics</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Levchenko, E. A.</creatorcontrib><creatorcontrib>Trifonov, A. Yu</creatorcontrib><creatorcontrib>Shapovalov, A. V.</creatorcontrib><collection>CrossRef</collection><jtitle>Russian physics journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Levchenko, E. A.</au><au>Trifonov, A. Yu</au><au>Shapovalov, A. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Symmetries of the One-Dimensional Fokker–Planck–Kolmogorov Equation with a Nonlocal Quadratic Nonlinearity</atitle><jtitle>Russian physics journal</jtitle><stitle>Russ Phys J</stitle><date>2017-06-01</date><risdate>2017</risdate><volume>60</volume><issue>2</issue><spage>284</spage><epage>291</epage><pages>284-291</pages><issn>1064-8887</issn><eissn>1573-9228</eissn><abstract>The one-dimensional Fokker–Planck–Kolmogorov equation with a special type of nonlocal quadratic nonlinearity is represented as a consistent system of differential equations, including a dynamical system describing the evolution of the moments of the unknown function. Lie symmetries are found for the consistent system using methods of classical group analysis. An example of an invariant-group solution obtained with an additional integral constraint imposed on the system is considered.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11182-017-1073-z</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1064-8887
ispartof Russian physics journal, 2017-06, Vol.60 (2), p.284-291
issn 1064-8887
1573-9228
language eng
recordid cdi_proquest_journals_1906174885
source SpringerLink Journals - AutoHoldings
subjects Analysis
Condensed Matter Physics
Differential equations
Elementary Particle Physics and Field Theory
Evolution
Fokker-Planck equation
Hadrons
Heavy Ions
Lasers
Mathematical analysis
Mathematical and Computational Physics
Nonlinearity
Nuclear Physics
Optical Devices
Optics
Photonics
Physics
Physics and Astronomy
Theoretical
title Symmetries of the One-Dimensional Fokker–Planck–Kolmogorov Equation with a Nonlocal Quadratic Nonlinearity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T00%3A26%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Symmetries%20of%20the%20One-Dimensional%20Fokker%E2%80%93Planck%E2%80%93Kolmogorov%20Equation%20with%20a%20Nonlocal%20Quadratic%20Nonlinearity&rft.jtitle=Russian%20physics%20journal&rft.au=Levchenko,%20E.%20A.&rft.date=2017-06-01&rft.volume=60&rft.issue=2&rft.spage=284&rft.epage=291&rft.pages=284-291&rft.issn=1064-8887&rft.eissn=1573-9228&rft_id=info:doi/10.1007/s11182-017-1073-z&rft_dat=%3Cgale_proqu%3EA498129655%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1906174885&rft_id=info:pmid/&rft_galeid=A498129655&rfr_iscdi=true