Floer trajectories and stabilizing divisors

We incorporate pearly Floer trajectories into the tranversality scheme for pseudoholomorphic maps introduced by Cieliebak–Mohnke (J Symplectic Geom 5(3): 281–356, 2007 ). By choosing generic domain-dependent almost complex structures, we obtain zero- and one-dimensional moduli spaces with the struct...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fixed point theory and applications 2017-06, Vol.19 (2), p.1165-1236
Hauptverfasser: Charest, François, Woodward, Chris
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1236
container_issue 2
container_start_page 1165
container_title Journal of fixed point theory and applications
container_volume 19
creator Charest, François
Woodward, Chris
description We incorporate pearly Floer trajectories into the tranversality scheme for pseudoholomorphic maps introduced by Cieliebak–Mohnke (J Symplectic Geom 5(3): 281–356, 2007 ). By choosing generic domain-dependent almost complex structures, we obtain zero- and one-dimensional moduli spaces with the structure of cell complexes with rational fundamental classes. Integrating over these moduli spaces gives a definition of Floer cohomology over Novikov rings via stabilizing divisors for rational Lagrangians that are fixed point sets of anti-symplectic involutions satisfying certain Maslov index conditions as well as Hamiltonian Floer cohomology of compact rational symplectic manifolds.
doi_str_mv 10.1007/s11784-016-0379-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1905726068</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1905726068</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-96a395002b99bcaf4c93074928a1b478ca735325c552345de3944c451b8783a73</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wNuCR4nO5DtHKVaFghc9h2yalizrbk22gv56t6yIF08zMM_7DjyEXCLcIIC-LYjaCAqoKHBtqTkiM1QKqdZCHf_u3JySs1IaAAUM9YxcL9s-5mrIvolh6HOKpfLduiqDr1ObvlK3rdbpI5U-l3NysvFtiRc_c05el_cvi0e6en54WtytaOCoBmqV51YCsNraOviNCJaDFpYZj7XQJnjNJWcySMm4kOvIrRBBSKyNNnw8zsnV1LvL_fs-lsE1_T5340uHFqRmCpQZKZyokPtScty4XU5vPn86BHdw4iYnbnTiDk7cIcOmTBnZbhvzn-Z_Q983PGHo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1905726068</pqid></control><display><type>article</type><title>Floer trajectories and stabilizing divisors</title><source>SpringerLink Journals - AutoHoldings</source><creator>Charest, François ; Woodward, Chris</creator><creatorcontrib>Charest, François ; Woodward, Chris</creatorcontrib><description>We incorporate pearly Floer trajectories into the tranversality scheme for pseudoholomorphic maps introduced by Cieliebak–Mohnke (J Symplectic Geom 5(3): 281–356, 2007 ). By choosing generic domain-dependent almost complex structures, we obtain zero- and one-dimensional moduli spaces with the structure of cell complexes with rational fundamental classes. Integrating over these moduli spaces gives a definition of Floer cohomology over Novikov rings via stabilizing divisors for rational Lagrangians that are fixed point sets of anti-symplectic involutions satisfying certain Maslov index conditions as well as Hamiltonian Floer cohomology of compact rational symplectic manifolds.</description><identifier>ISSN: 1661-7738</identifier><identifier>EISSN: 1661-7746</identifier><identifier>DOI: 10.1007/s11784-016-0379-8</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Manifolds (mathematics) ; Mathematical Methods in Physics ; Mathematics ; Mathematics and Statistics ; Rings (mathematics) ; Trajectories</subject><ispartof>Journal of fixed point theory and applications, 2017-06, Vol.19 (2), p.1165-1236</ispartof><rights>Springer International Publishing 2017</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-96a395002b99bcaf4c93074928a1b478ca735325c552345de3944c451b8783a73</citedby><cites>FETCH-LOGICAL-c316t-96a395002b99bcaf4c93074928a1b478ca735325c552345de3944c451b8783a73</cites><orcidid>0000-0001-9508-5315</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11784-016-0379-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11784-016-0379-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Charest, François</creatorcontrib><creatorcontrib>Woodward, Chris</creatorcontrib><title>Floer trajectories and stabilizing divisors</title><title>Journal of fixed point theory and applications</title><addtitle>J. Fixed Point Theory Appl</addtitle><description>We incorporate pearly Floer trajectories into the tranversality scheme for pseudoholomorphic maps introduced by Cieliebak–Mohnke (J Symplectic Geom 5(3): 281–356, 2007 ). By choosing generic domain-dependent almost complex structures, we obtain zero- and one-dimensional moduli spaces with the structure of cell complexes with rational fundamental classes. Integrating over these moduli spaces gives a definition of Floer cohomology over Novikov rings via stabilizing divisors for rational Lagrangians that are fixed point sets of anti-symplectic involutions satisfying certain Maslov index conditions as well as Hamiltonian Floer cohomology of compact rational symplectic manifolds.</description><subject>Analysis</subject><subject>Manifolds (mathematics)</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Rings (mathematics)</subject><subject>Trajectories</subject><issn>1661-7738</issn><issn>1661-7746</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKs_wNuCR4nO5DtHKVaFghc9h2yalizrbk22gv56t6yIF08zMM_7DjyEXCLcIIC-LYjaCAqoKHBtqTkiM1QKqdZCHf_u3JySs1IaAAUM9YxcL9s-5mrIvolh6HOKpfLduiqDr1ObvlK3rdbpI5U-l3NysvFtiRc_c05el_cvi0e6en54WtytaOCoBmqV51YCsNraOviNCJaDFpYZj7XQJnjNJWcySMm4kOvIrRBBSKyNNnw8zsnV1LvL_fs-lsE1_T5340uHFqRmCpQZKZyokPtScty4XU5vPn86BHdw4iYnbnTiDk7cIcOmTBnZbhvzn-Z_Q983PGHo</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Charest, François</creator><creator>Woodward, Chris</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9508-5315</orcidid></search><sort><creationdate>20170601</creationdate><title>Floer trajectories and stabilizing divisors</title><author>Charest, François ; Woodward, Chris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-96a395002b99bcaf4c93074928a1b478ca735325c552345de3944c451b8783a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Analysis</topic><topic>Manifolds (mathematics)</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Rings (mathematics)</topic><topic>Trajectories</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Charest, François</creatorcontrib><creatorcontrib>Woodward, Chris</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of fixed point theory and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Charest, François</au><au>Woodward, Chris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Floer trajectories and stabilizing divisors</atitle><jtitle>Journal of fixed point theory and applications</jtitle><stitle>J. Fixed Point Theory Appl</stitle><date>2017-06-01</date><risdate>2017</risdate><volume>19</volume><issue>2</issue><spage>1165</spage><epage>1236</epage><pages>1165-1236</pages><issn>1661-7738</issn><eissn>1661-7746</eissn><abstract>We incorporate pearly Floer trajectories into the tranversality scheme for pseudoholomorphic maps introduced by Cieliebak–Mohnke (J Symplectic Geom 5(3): 281–356, 2007 ). By choosing generic domain-dependent almost complex structures, we obtain zero- and one-dimensional moduli spaces with the structure of cell complexes with rational fundamental classes. Integrating over these moduli spaces gives a definition of Floer cohomology over Novikov rings via stabilizing divisors for rational Lagrangians that are fixed point sets of anti-symplectic involutions satisfying certain Maslov index conditions as well as Hamiltonian Floer cohomology of compact rational symplectic manifolds.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11784-016-0379-8</doi><tpages>72</tpages><orcidid>https://orcid.org/0000-0001-9508-5315</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1661-7738
ispartof Journal of fixed point theory and applications, 2017-06, Vol.19 (2), p.1165-1236
issn 1661-7738
1661-7746
language eng
recordid cdi_proquest_journals_1905726068
source SpringerLink Journals - AutoHoldings
subjects Analysis
Manifolds (mathematics)
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Rings (mathematics)
Trajectories
title Floer trajectories and stabilizing divisors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A47%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Floer%20trajectories%20and%20stabilizing%20divisors&rft.jtitle=Journal%20of%20fixed%20point%20theory%20and%20applications&rft.au=Charest,%20Fran%C3%A7ois&rft.date=2017-06-01&rft.volume=19&rft.issue=2&rft.spage=1165&rft.epage=1236&rft.pages=1165-1236&rft.issn=1661-7738&rft.eissn=1661-7746&rft_id=info:doi/10.1007/s11784-016-0379-8&rft_dat=%3Cproquest_cross%3E1905726068%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1905726068&rft_id=info:pmid/&rfr_iscdi=true