Type-2 Fuzzy Alpha-Cuts

Type-2 fuzzy logic systems make use of type-2 fuzzy sets (T2FS). To be able to deliver useful type-2 fuzzy logic applications we need to be able to perform meaningful operations on these sets. These operations should also be practically tractable. However, T2FS suffer the shortcoming of being comple...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on fuzzy systems 2017-06, Vol.25 (3), p.682-692
Hauptverfasser: Hamrawi, Hussam, Coupland, Simon, John, Robert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 692
container_issue 3
container_start_page 682
container_title IEEE transactions on fuzzy systems
container_volume 25
creator Hamrawi, Hussam
Coupland, Simon
John, Robert
description Type-2 fuzzy logic systems make use of type-2 fuzzy sets (T2FS). To be able to deliver useful type-2 fuzzy logic applications we need to be able to perform meaningful operations on these sets. These operations should also be practically tractable. However, T2FS suffer the shortcoming of being complex by definition. Indeed, the third dimension, which is the source of extra parameters, is in itself the origin of extra computational cost. The quest for a representation that allow practical systems to be implemented is the motivation for our work. In this paper, we define the alpha-cut decomposition theorem for T2FS which is a new representation analogous to the alpha-cut representation of type-1 fuzzy sets and the extension principle. We show that this new decomposition theorem forms a methodology for extending mathematical concepts from crisp sets to T2FS directly. In the process of developing this theory, we also define a generalization that allows us to extend operations from interval T2FS or interval valued fuzzy sets to T2FS. These results will allow for the more applications of T2FS by expiating the parallelism that the research here affords.
doi_str_mv 10.1109/TFUZZ.2016.2574914
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1905723089</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7482819</ieee_id><sourcerecordid>1905723089</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-b2070d93be2a7701d4c472a42cd588a36f23923ab5570d5bf6585bc6163ec2783</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQQBdRsFbPgl4KnrfOzH4fSzEqFLy0l16WTbrBlmpiNjmkv97UFk8zh_dm4DH2gDBFBPe8zFbr9ZQA9ZSUkQ7lBRuhk8gBhLwcdtCCawP6mt2ktANAqdCO2P2yryOnSdYdDv1ktq8_A593bbplV2XYp3h3nmO2yl6W8ze--Hh9n88WvBDCtTwnMLBxIo8UjAHcyEIaCpKKjbI2CF2ScCRCrtTAqbzUyqq80KhFLMhYMWZPp7t1U_10MbV-V3XN9_DSowNlSIB1A0UnqmiqlJpY-rrZfoWm9wj-GMD_BfDHAP4cYJAeT9I2xvgvGGnJohO_U6xTxA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1905723089</pqid></control><display><type>article</type><title>Type-2 Fuzzy Alpha-Cuts</title><source>IEEE Electronic Library (IEL)</source><creator>Hamrawi, Hussam ; Coupland, Simon ; John, Robert</creator><creatorcontrib>Hamrawi, Hussam ; Coupland, Simon ; John, Robert</creatorcontrib><description>Type-2 fuzzy logic systems make use of type-2 fuzzy sets (T2FS). To be able to deliver useful type-2 fuzzy logic applications we need to be able to perform meaningful operations on these sets. These operations should also be practically tractable. However, T2FS suffer the shortcoming of being complex by definition. Indeed, the third dimension, which is the source of extra parameters, is in itself the origin of extra computational cost. The quest for a representation that allow practical systems to be implemented is the motivation for our work. In this paper, we define the alpha-cut decomposition theorem for T2FS which is a new representation analogous to the alpha-cut representation of type-1 fuzzy sets and the extension principle. We show that this new decomposition theorem forms a methodology for extending mathematical concepts from crisp sets to T2FS directly. In the process of developing this theory, we also define a generalization that allows us to extend operations from interval T2FS or interval valued fuzzy sets to T2FS. These results will allow for the more applications of T2FS by expiating the parallelism that the research here affords.</description><identifier>ISSN: 1063-6706</identifier><identifier>EISSN: 1941-0034</identifier><identifier>DOI: 10.1109/TFUZZ.2016.2574914</identifier><identifier>CODEN: IEFSEV</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Computation ; Computational intelligence ; Electronic mail ; Frequency selective surfaces ; Fuzzy logic ; Fuzzy sets ; Fuzzy systems ; Mathematical analysis ; Processor scheduling ; Uncertainty</subject><ispartof>IEEE transactions on fuzzy systems, 2017-06, Vol.25 (3), p.682-692</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-b2070d93be2a7701d4c472a42cd588a36f23923ab5570d5bf6585bc6163ec2783</citedby><cites>FETCH-LOGICAL-c339t-b2070d93be2a7701d4c472a42cd588a36f23923ab5570d5bf6585bc6163ec2783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7482819$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7482819$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hamrawi, Hussam</creatorcontrib><creatorcontrib>Coupland, Simon</creatorcontrib><creatorcontrib>John, Robert</creatorcontrib><title>Type-2 Fuzzy Alpha-Cuts</title><title>IEEE transactions on fuzzy systems</title><addtitle>TFUZZ</addtitle><description>Type-2 fuzzy logic systems make use of type-2 fuzzy sets (T2FS). To be able to deliver useful type-2 fuzzy logic applications we need to be able to perform meaningful operations on these sets. These operations should also be practically tractable. However, T2FS suffer the shortcoming of being complex by definition. Indeed, the third dimension, which is the source of extra parameters, is in itself the origin of extra computational cost. The quest for a representation that allow practical systems to be implemented is the motivation for our work. In this paper, we define the alpha-cut decomposition theorem for T2FS which is a new representation analogous to the alpha-cut representation of type-1 fuzzy sets and the extension principle. We show that this new decomposition theorem forms a methodology for extending mathematical concepts from crisp sets to T2FS directly. In the process of developing this theory, we also define a generalization that allows us to extend operations from interval T2FS or interval valued fuzzy sets to T2FS. These results will allow for the more applications of T2FS by expiating the parallelism that the research here affords.</description><subject>Computation</subject><subject>Computational intelligence</subject><subject>Electronic mail</subject><subject>Frequency selective surfaces</subject><subject>Fuzzy logic</subject><subject>Fuzzy sets</subject><subject>Fuzzy systems</subject><subject>Mathematical analysis</subject><subject>Processor scheduling</subject><subject>Uncertainty</subject><issn>1063-6706</issn><issn>1941-0034</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQQBdRsFbPgl4KnrfOzH4fSzEqFLy0l16WTbrBlmpiNjmkv97UFk8zh_dm4DH2gDBFBPe8zFbr9ZQA9ZSUkQ7lBRuhk8gBhLwcdtCCawP6mt2ktANAqdCO2P2yryOnSdYdDv1ktq8_A593bbplV2XYp3h3nmO2yl6W8ze--Hh9n88WvBDCtTwnMLBxIo8UjAHcyEIaCpKKjbI2CF2ScCRCrtTAqbzUyqq80KhFLMhYMWZPp7t1U_10MbV-V3XN9_DSowNlSIB1A0UnqmiqlJpY-rrZfoWm9wj-GMD_BfDHAP4cYJAeT9I2xvgvGGnJohO_U6xTxA</recordid><startdate>201706</startdate><enddate>201706</enddate><creator>Hamrawi, Hussam</creator><creator>Coupland, Simon</creator><creator>John, Robert</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201706</creationdate><title>Type-2 Fuzzy Alpha-Cuts</title><author>Hamrawi, Hussam ; Coupland, Simon ; John, Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-b2070d93be2a7701d4c472a42cd588a36f23923ab5570d5bf6585bc6163ec2783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Computation</topic><topic>Computational intelligence</topic><topic>Electronic mail</topic><topic>Frequency selective surfaces</topic><topic>Fuzzy logic</topic><topic>Fuzzy sets</topic><topic>Fuzzy systems</topic><topic>Mathematical analysis</topic><topic>Processor scheduling</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hamrawi, Hussam</creatorcontrib><creatorcontrib>Coupland, Simon</creatorcontrib><creatorcontrib>John, Robert</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hamrawi, Hussam</au><au>Coupland, Simon</au><au>John, Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Type-2 Fuzzy Alpha-Cuts</atitle><jtitle>IEEE transactions on fuzzy systems</jtitle><stitle>TFUZZ</stitle><date>2017-06</date><risdate>2017</risdate><volume>25</volume><issue>3</issue><spage>682</spage><epage>692</epage><pages>682-692</pages><issn>1063-6706</issn><eissn>1941-0034</eissn><coden>IEFSEV</coden><abstract>Type-2 fuzzy logic systems make use of type-2 fuzzy sets (T2FS). To be able to deliver useful type-2 fuzzy logic applications we need to be able to perform meaningful operations on these sets. These operations should also be practically tractable. However, T2FS suffer the shortcoming of being complex by definition. Indeed, the third dimension, which is the source of extra parameters, is in itself the origin of extra computational cost. The quest for a representation that allow practical systems to be implemented is the motivation for our work. In this paper, we define the alpha-cut decomposition theorem for T2FS which is a new representation analogous to the alpha-cut representation of type-1 fuzzy sets and the extension principle. We show that this new decomposition theorem forms a methodology for extending mathematical concepts from crisp sets to T2FS directly. In the process of developing this theory, we also define a generalization that allows us to extend operations from interval T2FS or interval valued fuzzy sets to T2FS. These results will allow for the more applications of T2FS by expiating the parallelism that the research here affords.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TFUZZ.2016.2574914</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6706
ispartof IEEE transactions on fuzzy systems, 2017-06, Vol.25 (3), p.682-692
issn 1063-6706
1941-0034
language eng
recordid cdi_proquest_journals_1905723089
source IEEE Electronic Library (IEL)
subjects Computation
Computational intelligence
Electronic mail
Frequency selective surfaces
Fuzzy logic
Fuzzy sets
Fuzzy systems
Mathematical analysis
Processor scheduling
Uncertainty
title Type-2 Fuzzy Alpha-Cuts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T18%3A44%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Type-2%20Fuzzy%20Alpha-Cuts&rft.jtitle=IEEE%20transactions%20on%20fuzzy%20systems&rft.au=Hamrawi,%20Hussam&rft.date=2017-06&rft.volume=25&rft.issue=3&rft.spage=682&rft.epage=692&rft.pages=682-692&rft.issn=1063-6706&rft.eissn=1941-0034&rft.coden=IEFSEV&rft_id=info:doi/10.1109/TFUZZ.2016.2574914&rft_dat=%3Cproquest_RIE%3E1905723089%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1905723089&rft_id=info:pmid/&rft_ieee_id=7482819&rfr_iscdi=true