Kinetics of boron diffusion and characterization of Fe2B layers on AISI 9840 steel
In this work, the AISI 9840 steel was subjected to the powder-pack boriding in the temperature range of 1123–1273 K for various times ranging from 2 to 8 h. A kinetic model based on the principle of mass conservation at the growing interface was used to estimate the boron diffusion coefficients thro...
Gespeichert in:
Veröffentlicht in: | Protection of metals and physical chemistry of surfaces 2017-05, Vol.53 (3), p.534-547 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this work, the AISI 9840 steel was subjected to the powder-pack boriding in the temperature range of 1123–1273 K for various times ranging from 2 to 8 h. A kinetic model based on the principle of mass conservation at the growing interface was used to estimate the boron diffusion coefficients through the Fe
2
B layers. The pack-borided samples were experimentally characterized by different techniques such as: Scaning electron microscopy, XRD analysis, Microhardness Vickers testing. The Daimler-Benz Rockwell-C indentation technique was used to assess the adhesion quality of boride coatings on AISI 9840 steel. Finally, the scratch and pin-on-disc tests for wear resistance were respectively performed using an LG Motion Ltd and a CSM tribometer under dry sliding conditions. The boron activation energy for the AISI 9840 steel was estimated as 193.08 kJ /mol by applying the present model. To confirm and extend the validity of the diffusion model, the experimental values of Fe
2
B layers thicknesses obtained for other boriding conditions were compared with the predicted values. |
---|---|
ISSN: | 2070-2051 2070-206X |
DOI: | 10.1134/S2070205117030169 |