TLS-bridged co-prediction of tree-level multifarious stem structure variables from worldview-2 panchromatic imagery: a case study of the boreal forest

In forest ecosystem studies, tree stem structure variables (SSVs) proved to be an essential kind of parameters, and now simultaneously deriving SSVs of as many kinds as possible at large scales is preferred for enhancing the frontier studies on marcoecosystem ecology and global carbon cycle. For thi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of digital earth 2017-07, Vol.10 (7), p.701-718
Hauptverfasser: Lin, Yi, Wei, Tian, Yang, Bin, Knyazikhin, Yuri, Zhang, Yuhu, Sato, Hisashi, Fang, Xing, Liang, Xinlian, Yan, Lei, Sun, Shanlin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 718
container_issue 7
container_start_page 701
container_title International journal of digital earth
container_volume 10
creator Lin, Yi
Wei, Tian
Yang, Bin
Knyazikhin, Yuri
Zhang, Yuhu
Sato, Hisashi
Fang, Xing
Liang, Xinlian
Yan, Lei
Sun, Shanlin
description In forest ecosystem studies, tree stem structure variables (SSVs) proved to be an essential kind of parameters, and now simultaneously deriving SSVs of as many kinds as possible at large scales is preferred for enhancing the frontier studies on marcoecosystem ecology and global carbon cycle. For this newly emerging task, satellite imagery such as WorldView-2 panchromatic images (WPIs) is used as a potential solution for co-prediction of tree-level multifarious SSVs, with static terrestrial laser scanning (TLS) assumed as a 'bridge'. The specific operation is to pursue the allometric relationships between TLS-derived SSVs and WPI-derived feature parameters, and regression analyses with one or multiple explanatory variables are applied to deduce the prediction models (termed as Model1s and Model2s). In the case of Picea abies, Pinus sylvestris, Populus tremul and Quercus robur in a boreal forest, tests showed that Model1s and Model2s for different tree species can be derived (e.g. the maximum R 2  = 0.574 for Q. robur). Overall, this study basically validated the algorithm proposed for co-prediction of multifarious SSVs, and the contribution is equivalent to developing a viable solution for SSV-estimation upscaling, which is useful for large-scale investigations of forest understory, macroecosystem ecology, global vegetation dynamics and global carbon cycle.
doi_str_mv 10.1080/17538947.2016.1247473
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_1904814244</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_21cd1556d8ce4872b78519141dc07d7d</doaj_id><sourcerecordid>1904814244</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-c2693364f0c1dc5809535bf9b44ae4a164f8aa4ceb231ffb324ab126cf0e927e3</originalsourceid><addsrcrecordid>eNp9Uctu2zAQFIoWaOrkEwIQ6Fkun6LUU4ugaQMY6CHpmaDIpUNDMt2l5MA_ku8tbac55sIlhtyZ3ZmqumZ0yWhLvzCtRNtJveSUNUvGpZZavKsujnjddkq9f71L_bH6lPOG0oZKKS6q54fVfd1j9GvwxKV6h-Cjm2LakhTIhAD1AHsYyDgPUwwWY5ozyROM5cDZTTMC2RfY9gNkEjCN5Cnh4PcRnmpOdnbrHgtop-hIHO0a8PCVWOJshsIw-8NJ5xFInxDsQEIpebqsPgQ7ZLh6qYvqz-2Ph5tf9er3z7ub76vaSSqn2vGmE6KRgTrmnWppp4TqQ9dLaUFaVl5aa6WDngsWQi-4tD3jjQsUOq5BLKq7M69PdmN2WCbEg0k2mhOQcG0sltEHMJw5z5RqfOtAtpr3ulWsY7IIU-21L1yfz1w7TH_nsoTZpBm3ZXzDOipbJnmxfFGp8y-HKWeE8KrKqDnGaf7HaY5xmpc4S9-3c1_cFotGezLZTPYwJAxYXI7ZiLcp_gEwvqkS</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1904814244</pqid></control><display><type>article</type><title>TLS-bridged co-prediction of tree-level multifarious stem structure variables from worldview-2 panchromatic imagery: a case study of the boreal forest</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Lin, Yi ; Wei, Tian ; Yang, Bin ; Knyazikhin, Yuri ; Zhang, Yuhu ; Sato, Hisashi ; Fang, Xing ; Liang, Xinlian ; Yan, Lei ; Sun, Shanlin</creator><creatorcontrib>Lin, Yi ; Wei, Tian ; Yang, Bin ; Knyazikhin, Yuri ; Zhang, Yuhu ; Sato, Hisashi ; Fang, Xing ; Liang, Xinlian ; Yan, Lei ; Sun, Shanlin</creatorcontrib><description>In forest ecosystem studies, tree stem structure variables (SSVs) proved to be an essential kind of parameters, and now simultaneously deriving SSVs of as many kinds as possible at large scales is preferred for enhancing the frontier studies on marcoecosystem ecology and global carbon cycle. For this newly emerging task, satellite imagery such as WorldView-2 panchromatic images (WPIs) is used as a potential solution for co-prediction of tree-level multifarious SSVs, with static terrestrial laser scanning (TLS) assumed as a 'bridge'. The specific operation is to pursue the allometric relationships between TLS-derived SSVs and WPI-derived feature parameters, and regression analyses with one or multiple explanatory variables are applied to deduce the prediction models (termed as Model1s and Model2s). In the case of Picea abies, Pinus sylvestris, Populus tremul and Quercus robur in a boreal forest, tests showed that Model1s and Model2s for different tree species can be derived (e.g. the maximum R 2  = 0.574 for Q. robur). Overall, this study basically validated the algorithm proposed for co-prediction of multifarious SSVs, and the contribution is equivalent to developing a viable solution for SSV-estimation upscaling, which is useful for large-scale investigations of forest understory, macroecosystem ecology, global vegetation dynamics and global carbon cycle.</description><identifier>ISSN: 1753-8947</identifier><identifier>EISSN: 1753-8955</identifier><identifier>DOI: 10.1080/17538947.2016.1247473</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis</publisher><subject>Algorithms ; allometric relationship ; Allometry ; Boreal forests ; Bridges ; Carbon cycle ; Case studies ; co-prediction model ; Dynamics ; Ecological monitoring ; Ecology ; Ecosystem studies ; Equivalence ; Evolution ; Forest ecosystems ; Imagery ; Lasers ; Mathematical models ; Parameters ; Pine trees ; Plant species ; Prediction models ; Regression analysis ; Satellite imagery ; Satellites ; Scanning ; Spaceborne remote sensing ; static terrestrial laser scanning (TLS) ; Tests ; Tree stem structure variable (SSV) ; Understory ; Vegetation ; WorldView-2 panchromatic image (WPI)</subject><ispartof>International journal of digital earth, 2017-07, Vol.10 (7), p.701-718</ispartof><rights>2016 Informa UK Limited, trading as Taylor &amp; Francis Group 2016</rights><rights>2016 Informa UK Limited, trading as Taylor &amp; Francis Group</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-c2693364f0c1dc5809535bf9b44ae4a164f8aa4ceb231ffb324ab126cf0e927e3</citedby><cites>FETCH-LOGICAL-c404t-c2693364f0c1dc5809535bf9b44ae4a164f8aa4ceb231ffb324ab126cf0e927e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Lin, Yi</creatorcontrib><creatorcontrib>Wei, Tian</creatorcontrib><creatorcontrib>Yang, Bin</creatorcontrib><creatorcontrib>Knyazikhin, Yuri</creatorcontrib><creatorcontrib>Zhang, Yuhu</creatorcontrib><creatorcontrib>Sato, Hisashi</creatorcontrib><creatorcontrib>Fang, Xing</creatorcontrib><creatorcontrib>Liang, Xinlian</creatorcontrib><creatorcontrib>Yan, Lei</creatorcontrib><creatorcontrib>Sun, Shanlin</creatorcontrib><title>TLS-bridged co-prediction of tree-level multifarious stem structure variables from worldview-2 panchromatic imagery: a case study of the boreal forest</title><title>International journal of digital earth</title><description>In forest ecosystem studies, tree stem structure variables (SSVs) proved to be an essential kind of parameters, and now simultaneously deriving SSVs of as many kinds as possible at large scales is preferred for enhancing the frontier studies on marcoecosystem ecology and global carbon cycle. For this newly emerging task, satellite imagery such as WorldView-2 panchromatic images (WPIs) is used as a potential solution for co-prediction of tree-level multifarious SSVs, with static terrestrial laser scanning (TLS) assumed as a 'bridge'. The specific operation is to pursue the allometric relationships between TLS-derived SSVs and WPI-derived feature parameters, and regression analyses with one or multiple explanatory variables are applied to deduce the prediction models (termed as Model1s and Model2s). In the case of Picea abies, Pinus sylvestris, Populus tremul and Quercus robur in a boreal forest, tests showed that Model1s and Model2s for different tree species can be derived (e.g. the maximum R 2  = 0.574 for Q. robur). Overall, this study basically validated the algorithm proposed for co-prediction of multifarious SSVs, and the contribution is equivalent to developing a viable solution for SSV-estimation upscaling, which is useful for large-scale investigations of forest understory, macroecosystem ecology, global vegetation dynamics and global carbon cycle.</description><subject>Algorithms</subject><subject>allometric relationship</subject><subject>Allometry</subject><subject>Boreal forests</subject><subject>Bridges</subject><subject>Carbon cycle</subject><subject>Case studies</subject><subject>co-prediction model</subject><subject>Dynamics</subject><subject>Ecological monitoring</subject><subject>Ecology</subject><subject>Ecosystem studies</subject><subject>Equivalence</subject><subject>Evolution</subject><subject>Forest ecosystems</subject><subject>Imagery</subject><subject>Lasers</subject><subject>Mathematical models</subject><subject>Parameters</subject><subject>Pine trees</subject><subject>Plant species</subject><subject>Prediction models</subject><subject>Regression analysis</subject><subject>Satellite imagery</subject><subject>Satellites</subject><subject>Scanning</subject><subject>Spaceborne remote sensing</subject><subject>static terrestrial laser scanning (TLS)</subject><subject>Tests</subject><subject>Tree stem structure variable (SSV)</subject><subject>Understory</subject><subject>Vegetation</subject><subject>WorldView-2 panchromatic image (WPI)</subject><issn>1753-8947</issn><issn>1753-8955</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9Uctu2zAQFIoWaOrkEwIQ6Fkun6LUU4ugaQMY6CHpmaDIpUNDMt2l5MA_ku8tbac55sIlhtyZ3ZmqumZ0yWhLvzCtRNtJveSUNUvGpZZavKsujnjddkq9f71L_bH6lPOG0oZKKS6q54fVfd1j9GvwxKV6h-Cjm2LakhTIhAD1AHsYyDgPUwwWY5ozyROM5cDZTTMC2RfY9gNkEjCN5Cnh4PcRnmpOdnbrHgtop-hIHO0a8PCVWOJshsIw-8NJ5xFInxDsQEIpebqsPgQ7ZLh6qYvqz-2Ph5tf9er3z7ub76vaSSqn2vGmE6KRgTrmnWppp4TqQ9dLaUFaVl5aa6WDngsWQi-4tD3jjQsUOq5BLKq7M69PdmN2WCbEg0k2mhOQcG0sltEHMJw5z5RqfOtAtpr3ulWsY7IIU-21L1yfz1w7TH_nsoTZpBm3ZXzDOipbJnmxfFGp8y-HKWeE8KrKqDnGaf7HaY5xmpc4S9-3c1_cFotGezLZTPYwJAxYXI7ZiLcp_gEwvqkS</recordid><startdate>20170703</startdate><enddate>20170703</enddate><creator>Lin, Yi</creator><creator>Wei, Tian</creator><creator>Yang, Bin</creator><creator>Knyazikhin, Yuri</creator><creator>Zhang, Yuhu</creator><creator>Sato, Hisashi</creator><creator>Fang, Xing</creator><creator>Liang, Xinlian</creator><creator>Yan, Lei</creator><creator>Sun, Shanlin</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><general>Taylor &amp; Francis Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>SOI</scope><scope>DOA</scope></search><sort><creationdate>20170703</creationdate><title>TLS-bridged co-prediction of tree-level multifarious stem structure variables from worldview-2 panchromatic imagery: a case study of the boreal forest</title><author>Lin, Yi ; Wei, Tian ; Yang, Bin ; Knyazikhin, Yuri ; Zhang, Yuhu ; Sato, Hisashi ; Fang, Xing ; Liang, Xinlian ; Yan, Lei ; Sun, Shanlin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-c2693364f0c1dc5809535bf9b44ae4a164f8aa4ceb231ffb324ab126cf0e927e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>allometric relationship</topic><topic>Allometry</topic><topic>Boreal forests</topic><topic>Bridges</topic><topic>Carbon cycle</topic><topic>Case studies</topic><topic>co-prediction model</topic><topic>Dynamics</topic><topic>Ecological monitoring</topic><topic>Ecology</topic><topic>Ecosystem studies</topic><topic>Equivalence</topic><topic>Evolution</topic><topic>Forest ecosystems</topic><topic>Imagery</topic><topic>Lasers</topic><topic>Mathematical models</topic><topic>Parameters</topic><topic>Pine trees</topic><topic>Plant species</topic><topic>Prediction models</topic><topic>Regression analysis</topic><topic>Satellite imagery</topic><topic>Satellites</topic><topic>Scanning</topic><topic>Spaceborne remote sensing</topic><topic>static terrestrial laser scanning (TLS)</topic><topic>Tests</topic><topic>Tree stem structure variable (SSV)</topic><topic>Understory</topic><topic>Vegetation</topic><topic>WorldView-2 panchromatic image (WPI)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Yi</creatorcontrib><creatorcontrib>Wei, Tian</creatorcontrib><creatorcontrib>Yang, Bin</creatorcontrib><creatorcontrib>Knyazikhin, Yuri</creatorcontrib><creatorcontrib>Zhang, Yuhu</creatorcontrib><creatorcontrib>Sato, Hisashi</creatorcontrib><creatorcontrib>Fang, Xing</creatorcontrib><creatorcontrib>Liang, Xinlian</creatorcontrib><creatorcontrib>Yan, Lei</creatorcontrib><creatorcontrib>Sun, Shanlin</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>International journal of digital earth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Yi</au><au>Wei, Tian</au><au>Yang, Bin</au><au>Knyazikhin, Yuri</au><au>Zhang, Yuhu</au><au>Sato, Hisashi</au><au>Fang, Xing</au><au>Liang, Xinlian</au><au>Yan, Lei</au><au>Sun, Shanlin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TLS-bridged co-prediction of tree-level multifarious stem structure variables from worldview-2 panchromatic imagery: a case study of the boreal forest</atitle><jtitle>International journal of digital earth</jtitle><date>2017-07-03</date><risdate>2017</risdate><volume>10</volume><issue>7</issue><spage>701</spage><epage>718</epage><pages>701-718</pages><issn>1753-8947</issn><eissn>1753-8955</eissn><abstract>In forest ecosystem studies, tree stem structure variables (SSVs) proved to be an essential kind of parameters, and now simultaneously deriving SSVs of as many kinds as possible at large scales is preferred for enhancing the frontier studies on marcoecosystem ecology and global carbon cycle. For this newly emerging task, satellite imagery such as WorldView-2 panchromatic images (WPIs) is used as a potential solution for co-prediction of tree-level multifarious SSVs, with static terrestrial laser scanning (TLS) assumed as a 'bridge'. The specific operation is to pursue the allometric relationships between TLS-derived SSVs and WPI-derived feature parameters, and regression analyses with one or multiple explanatory variables are applied to deduce the prediction models (termed as Model1s and Model2s). In the case of Picea abies, Pinus sylvestris, Populus tremul and Quercus robur in a boreal forest, tests showed that Model1s and Model2s for different tree species can be derived (e.g. the maximum R 2  = 0.574 for Q. robur). Overall, this study basically validated the algorithm proposed for co-prediction of multifarious SSVs, and the contribution is equivalent to developing a viable solution for SSV-estimation upscaling, which is useful for large-scale investigations of forest understory, macroecosystem ecology, global vegetation dynamics and global carbon cycle.</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/17538947.2016.1247473</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1753-8947
ispartof International journal of digital earth, 2017-07, Vol.10 (7), p.701-718
issn 1753-8947
1753-8955
language eng
recordid cdi_proquest_journals_1904814244
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithms
allometric relationship
Allometry
Boreal forests
Bridges
Carbon cycle
Case studies
co-prediction model
Dynamics
Ecological monitoring
Ecology
Ecosystem studies
Equivalence
Evolution
Forest ecosystems
Imagery
Lasers
Mathematical models
Parameters
Pine trees
Plant species
Prediction models
Regression analysis
Satellite imagery
Satellites
Scanning
Spaceborne remote sensing
static terrestrial laser scanning (TLS)
Tests
Tree stem structure variable (SSV)
Understory
Vegetation
WorldView-2 panchromatic image (WPI)
title TLS-bridged co-prediction of tree-level multifarious stem structure variables from worldview-2 panchromatic imagery: a case study of the boreal forest
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A17%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TLS-bridged%20co-prediction%20of%20tree-level%20multifarious%20stem%20structure%20variables%20from%20worldview-2%20panchromatic%20imagery:%20a%20case%20study%20of%20the%20boreal%20forest&rft.jtitle=International%20journal%20of%20digital%20earth&rft.au=Lin,%20Yi&rft.date=2017-07-03&rft.volume=10&rft.issue=7&rft.spage=701&rft.epage=718&rft.pages=701-718&rft.issn=1753-8947&rft.eissn=1753-8955&rft_id=info:doi/10.1080/17538947.2016.1247473&rft_dat=%3Cproquest_doaj_%3E1904814244%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1904814244&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_21cd1556d8ce4872b78519141dc07d7d&rfr_iscdi=true