Local structure of the MgxNixCoxCuxZnxO(x=0.2) entropy‐stabilized oxide: An EXAFS study

Entropy‐stabilized oxides (ESOs) provide an alternative route to novel materials discovery and synthesis. It is, however, a challenge to demonstrate that the constituent elements in an entropy‐stabilized crystal are homogeneously and randomly dispersed among a particular sublattice, resulting in a t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Ceramic Society 2017-06, Vol.100 (6), p.2732-2738
Hauptverfasser: Rost, Christina M., Rak, Zsolt, Brenner, Donald W., Maria, Jon‐Paul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2738
container_issue 6
container_start_page 2732
container_title Journal of the American Ceramic Society
container_volume 100
creator Rost, Christina M.
Rak, Zsolt
Brenner, Donald W.
Maria, Jon‐Paul
description Entropy‐stabilized oxides (ESOs) provide an alternative route to novel materials discovery and synthesis. It is, however, a challenge to demonstrate that the constituent elements in an entropy‐stabilized crystal are homogeneously and randomly dispersed among a particular sublattice, resulting in a true solid solution with no evidence of local order or clustering. In this work, we present the application and analysis of extended X‐ray absorption fine structure (EXAFS) on the prototype ESO composition MgxNixCoxCuxZnxO (x=0.2). In so doing, we can quantify the local atomic structure on an element‐by‐element basis. We conclude that local bond lengths between metal and oxygen vary around each absorbing cation, with notable distortion around the Cu–O polyhedra. By the second near neighbor (i.e., the cation‐cation pair), interatomic distances are uniform to the extent that the collected data can resolve. Crystal models that best fit the experimental scattering data include cations that are distributed randomly on an FCC sublattice with minimal positional disorder, with an interleaved FCC anion sublattice with oxygen ions displaced from the ideal locations to accommodate the distortions in the cation polyhedra. Density functional theory calculations of the ESO system yield a significant broadening in the positional distribution for the oxygen sublattice compared to that for the cation sublattice for all peaks, showing consistency with the conclusion from the experimental data that the distortion from an ideal rock salt structure occurs primarily through disorder in the oxygen sublattice.
doi_str_mv 10.1111/jace.14756
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_1904078781</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1904078781</sourcerecordid><originalsourceid>FETCH-LOGICAL-j2916-d8c7970dc3705311187b7df30f36e633962a72d80075236349c353469063f3783</originalsourceid><addsrcrecordid>eNotkE1OwzAQhS0EEqWw4QSW2MAiZRwn_kFiEUUtPyp0AUjAxkpjBxKFpDiJcFhxBM7ISUgLs5kZ6enNmw-hQwITMtRpkaRmQgIesi00ImFIPF8Sto1GAOB7XPiwi_aaphhWIkUwQk_zOk1K3LS2S9vOGlxnuH01-ObF3eYurl3cuefKLY7dOUz8E2yq1tar_ufru2mTZV7mn0bj2uXanOGowtPHaHY3uHW630c7WVI25uC_j9HDbHofX3rzxcVVHM29Yh3N0yLlkoNOKYeQDj8IvuQ6o5BRZhilkvkJ97UA4KFPGQ1kSkMaMAmMZpQLOkZHf74rW793pmlVUXe2Gk4qIiEALrggg4r8qT7y0vRqZfO3xPaKgFpzU2tuasNNXUfxdDPRX43WYGw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1904078781</pqid></control><display><type>article</type><title>Local structure of the MgxNixCoxCuxZnxO(x=0.2) entropy‐stabilized oxide: An EXAFS study</title><source>Access via Wiley Online Library</source><creator>Rost, Christina M. ; Rak, Zsolt ; Brenner, Donald W. ; Maria, Jon‐Paul</creator><creatorcontrib>Rost, Christina M. ; Rak, Zsolt ; Brenner, Donald W. ; Maria, Jon‐Paul</creatorcontrib><description>Entropy‐stabilized oxides (ESOs) provide an alternative route to novel materials discovery and synthesis. It is, however, a challenge to demonstrate that the constituent elements in an entropy‐stabilized crystal are homogeneously and randomly dispersed among a particular sublattice, resulting in a true solid solution with no evidence of local order or clustering. In this work, we present the application and analysis of extended X‐ray absorption fine structure (EXAFS) on the prototype ESO composition MgxNixCoxCuxZnxO (x=0.2). In so doing, we can quantify the local atomic structure on an element‐by‐element basis. We conclude that local bond lengths between metal and oxygen vary around each absorbing cation, with notable distortion around the Cu–O polyhedra. By the second near neighbor (i.e., the cation‐cation pair), interatomic distances are uniform to the extent that the collected data can resolve. Crystal models that best fit the experimental scattering data include cations that are distributed randomly on an FCC sublattice with minimal positional disorder, with an interleaved FCC anion sublattice with oxygen ions displaced from the ideal locations to accommodate the distortions in the cation polyhedra. Density functional theory calculations of the ESO system yield a significant broadening in the positional distribution for the oxygen sublattice compared to that for the cation sublattice for all peaks, showing consistency with the conclusion from the experimental data that the distortion from an ideal rock salt structure occurs primarily through disorder in the oxygen sublattice.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/jace.14756</identifier><language>eng</language><publisher>Columbus: Wiley Subscription Services, Inc</publisher><subject>Absorption ; Atomic structure ; Cations ; Chemical bonds ; Clustering ; Distortion ; Entropy ; Fine structure ; Halites ; Materials science ; oxides ; Oxygen ions ; Polyhedra ; structure ; X‐ray methods</subject><ispartof>Journal of the American Ceramic Society, 2017-06, Vol.100 (6), p.2732-2738</ispartof><rights>2017 The American Ceramic Society</rights><rights>2017 American Ceramic Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-6153-6066</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjace.14756$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjace.14756$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Rost, Christina M.</creatorcontrib><creatorcontrib>Rak, Zsolt</creatorcontrib><creatorcontrib>Brenner, Donald W.</creatorcontrib><creatorcontrib>Maria, Jon‐Paul</creatorcontrib><title>Local structure of the MgxNixCoxCuxZnxO(x=0.2) entropy‐stabilized oxide: An EXAFS study</title><title>Journal of the American Ceramic Society</title><description>Entropy‐stabilized oxides (ESOs) provide an alternative route to novel materials discovery and synthesis. It is, however, a challenge to demonstrate that the constituent elements in an entropy‐stabilized crystal are homogeneously and randomly dispersed among a particular sublattice, resulting in a true solid solution with no evidence of local order or clustering. In this work, we present the application and analysis of extended X‐ray absorption fine structure (EXAFS) on the prototype ESO composition MgxNixCoxCuxZnxO (x=0.2). In so doing, we can quantify the local atomic structure on an element‐by‐element basis. We conclude that local bond lengths between metal and oxygen vary around each absorbing cation, with notable distortion around the Cu–O polyhedra. By the second near neighbor (i.e., the cation‐cation pair), interatomic distances are uniform to the extent that the collected data can resolve. Crystal models that best fit the experimental scattering data include cations that are distributed randomly on an FCC sublattice with minimal positional disorder, with an interleaved FCC anion sublattice with oxygen ions displaced from the ideal locations to accommodate the distortions in the cation polyhedra. Density functional theory calculations of the ESO system yield a significant broadening in the positional distribution for the oxygen sublattice compared to that for the cation sublattice for all peaks, showing consistency with the conclusion from the experimental data that the distortion from an ideal rock salt structure occurs primarily through disorder in the oxygen sublattice.</description><subject>Absorption</subject><subject>Atomic structure</subject><subject>Cations</subject><subject>Chemical bonds</subject><subject>Clustering</subject><subject>Distortion</subject><subject>Entropy</subject><subject>Fine structure</subject><subject>Halites</subject><subject>Materials science</subject><subject>oxides</subject><subject>Oxygen ions</subject><subject>Polyhedra</subject><subject>structure</subject><subject>X‐ray methods</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNotkE1OwzAQhS0EEqWw4QSW2MAiZRwn_kFiEUUtPyp0AUjAxkpjBxKFpDiJcFhxBM7ISUgLs5kZ6enNmw-hQwITMtRpkaRmQgIesi00ImFIPF8Sto1GAOB7XPiwi_aaphhWIkUwQk_zOk1K3LS2S9vOGlxnuH01-ObF3eYurl3cuefKLY7dOUz8E2yq1tar_ufru2mTZV7mn0bj2uXanOGowtPHaHY3uHW630c7WVI25uC_j9HDbHofX3rzxcVVHM29Yh3N0yLlkoNOKYeQDj8IvuQ6o5BRZhilkvkJ97UA4KFPGQ1kSkMaMAmMZpQLOkZHf74rW793pmlVUXe2Gk4qIiEALrggg4r8qT7y0vRqZfO3xPaKgFpzU2tuasNNXUfxdDPRX43WYGw</recordid><startdate>201706</startdate><enddate>201706</enddate><creator>Rost, Christina M.</creator><creator>Rak, Zsolt</creator><creator>Brenner, Donald W.</creator><creator>Maria, Jon‐Paul</creator><general>Wiley Subscription Services, Inc</general><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-6153-6066</orcidid></search><sort><creationdate>201706</creationdate><title>Local structure of the MgxNixCoxCuxZnxO(x=0.2) entropy‐stabilized oxide: An EXAFS study</title><author>Rost, Christina M. ; Rak, Zsolt ; Brenner, Donald W. ; Maria, Jon‐Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j2916-d8c7970dc3705311187b7df30f36e633962a72d80075236349c353469063f3783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Absorption</topic><topic>Atomic structure</topic><topic>Cations</topic><topic>Chemical bonds</topic><topic>Clustering</topic><topic>Distortion</topic><topic>Entropy</topic><topic>Fine structure</topic><topic>Halites</topic><topic>Materials science</topic><topic>oxides</topic><topic>Oxygen ions</topic><topic>Polyhedra</topic><topic>structure</topic><topic>X‐ray methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rost, Christina M.</creatorcontrib><creatorcontrib>Rak, Zsolt</creatorcontrib><creatorcontrib>Brenner, Donald W.</creatorcontrib><creatorcontrib>Maria, Jon‐Paul</creatorcontrib><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rost, Christina M.</au><au>Rak, Zsolt</au><au>Brenner, Donald W.</au><au>Maria, Jon‐Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Local structure of the MgxNixCoxCuxZnxO(x=0.2) entropy‐stabilized oxide: An EXAFS study</atitle><jtitle>Journal of the American Ceramic Society</jtitle><date>2017-06</date><risdate>2017</risdate><volume>100</volume><issue>6</issue><spage>2732</spage><epage>2738</epage><pages>2732-2738</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><abstract>Entropy‐stabilized oxides (ESOs) provide an alternative route to novel materials discovery and synthesis. It is, however, a challenge to demonstrate that the constituent elements in an entropy‐stabilized crystal are homogeneously and randomly dispersed among a particular sublattice, resulting in a true solid solution with no evidence of local order or clustering. In this work, we present the application and analysis of extended X‐ray absorption fine structure (EXAFS) on the prototype ESO composition MgxNixCoxCuxZnxO (x=0.2). In so doing, we can quantify the local atomic structure on an element‐by‐element basis. We conclude that local bond lengths between metal and oxygen vary around each absorbing cation, with notable distortion around the Cu–O polyhedra. By the second near neighbor (i.e., the cation‐cation pair), interatomic distances are uniform to the extent that the collected data can resolve. Crystal models that best fit the experimental scattering data include cations that are distributed randomly on an FCC sublattice with minimal positional disorder, with an interleaved FCC anion sublattice with oxygen ions displaced from the ideal locations to accommodate the distortions in the cation polyhedra. Density functional theory calculations of the ESO system yield a significant broadening in the positional distribution for the oxygen sublattice compared to that for the cation sublattice for all peaks, showing consistency with the conclusion from the experimental data that the distortion from an ideal rock salt structure occurs primarily through disorder in the oxygen sublattice.</abstract><cop>Columbus</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/jace.14756</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-6153-6066</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0002-7820
ispartof Journal of the American Ceramic Society, 2017-06, Vol.100 (6), p.2732-2738
issn 0002-7820
1551-2916
language eng
recordid cdi_proquest_journals_1904078781
source Access via Wiley Online Library
subjects Absorption
Atomic structure
Cations
Chemical bonds
Clustering
Distortion
Entropy
Fine structure
Halites
Materials science
oxides
Oxygen ions
Polyhedra
structure
X‐ray methods
title Local structure of the MgxNixCoxCuxZnxO(x=0.2) entropy‐stabilized oxide: An EXAFS study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T13%3A44%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Local%20structure%20of%20the%20MgxNixCoxCuxZnxO(x=0.2)%20entropy%E2%80%90stabilized%20oxide:%20An%20EXAFS%20study&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=Rost,%20Christina%20M.&rft.date=2017-06&rft.volume=100&rft.issue=6&rft.spage=2732&rft.epage=2738&rft.pages=2732-2738&rft.issn=0002-7820&rft.eissn=1551-2916&rft_id=info:doi/10.1111/jace.14756&rft_dat=%3Cproquest_wiley%3E1904078781%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1904078781&rft_id=info:pmid/&rfr_iscdi=true