Future approaches to facilitate large-scale adoption of thermal based images as key input in the production of dynamic irrigation management zones

To use VRI systems, a field is divided into irrigation management zones (IMZs). While IMZs are dynamic in nature, most of IMZs prescription maps are static. High-resolution thermal images (TI) coupled with measured atmospheric conditions have been utilized to map the within-field water status variab...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in animal biosciences 2017-07, Vol.8 (2), p.546-550
Hauptverfasser: Cohen, Y., Agam, N., Klapp, I., Karnieli, A., Beeri, O., Alchanatis, V., Sochen, N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 550
container_issue 2
container_start_page 546
container_title Advances in animal biosciences
container_volume 8
creator Cohen, Y.
Agam, N.
Klapp, I.
Karnieli, A.
Beeri, O.
Alchanatis, V.
Sochen, N.
description To use VRI systems, a field is divided into irrigation management zones (IMZs). While IMZs are dynamic in nature, most of IMZs prescription maps are static. High-resolution thermal images (TI) coupled with measured atmospheric conditions have been utilized to map the within-field water status variability and to delineate in-season IMZs. Unfortunately, spaceborne TIs have coarse spatial resolution and aerial platforms require substantial financial investments, which may inhibit their large-scale adoption. Three approaches are proposed to facilitate large-scale adoption of TI-based IMZs: 1) increase of the capacity of aerial TI by enhancing their spatial resolution; 2) sharpening the spatial resolution of satellite TI by fusing satellite multi-spectral images in the visible-near-infrared (VIS-NIR) range; 3) increase the capacity of aerial TI by fusing satellite multi-spectral images in the VIS-NIR range. The scientific and engineering basis of each of the approaches is described together with initial results.
doi_str_mv 10.1017/S2040470017001352
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1904074302</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S2040470017001352</cupid><sourcerecordid>1904074302</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1622-71f03d3a71fd5fb93b88d51248d8f496b9ad921215fc8b7955afbba7ce5c4cbf3</originalsourceid><addsrcrecordid>eNp1kN9KwzAUxosoOOYewLuA19WkaZb2UoZTQfBCvS4n_7bMtqlJejEfwyc2c1MEMZCcw-H7fUm-LDsn-JJgwq-eClzikuPUp01ZcZRNdqO85KQ-_ukxPs1mIWxwWqzCtOKT7GM5xtFrBMPgHci1Dig6ZEDa1kaIGrXgVzoPEtokUm6I1vXIGRTX2nfQIgFBK2Q7WCUUAnrVW2T7YYzp3IlQ8lWj_MbUtofOSmS9tyv4mnbQJ7jTfUTvrtfhLDsx0AY9O9Rp9rK8eV7c5Q-Pt_eL64dcknlR5JwYTBWFVBUzoqaiqhQjRVmpypT1XNSg6oIUhBlZCV4zBkYI4FIzWUph6DS72PumF76NOsRm40bfpysbUqfEeElxkVRkr5LeheC1aQaffuu3DcHNLv3mT_qJoQcGOuGtWulf1v9Sn6gpiS4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1904074302</pqid></control><display><type>article</type><title>Future approaches to facilitate large-scale adoption of thermal based images as key input in the production of dynamic irrigation management zones</title><source>Cambridge University Press Journals Complete</source><creator>Cohen, Y. ; Agam, N. ; Klapp, I. ; Karnieli, A. ; Beeri, O. ; Alchanatis, V. ; Sochen, N.</creator><creatorcontrib>Cohen, Y. ; Agam, N. ; Klapp, I. ; Karnieli, A. ; Beeri, O. ; Alchanatis, V. ; Sochen, N.</creatorcontrib><description>To use VRI systems, a field is divided into irrigation management zones (IMZs). While IMZs are dynamic in nature, most of IMZs prescription maps are static. High-resolution thermal images (TI) coupled with measured atmospheric conditions have been utilized to map the within-field water status variability and to delineate in-season IMZs. Unfortunately, spaceborne TIs have coarse spatial resolution and aerial platforms require substantial financial investments, which may inhibit their large-scale adoption. Three approaches are proposed to facilitate large-scale adoption of TI-based IMZs: 1) increase of the capacity of aerial TI by enhancing their spatial resolution; 2) sharpening the spatial resolution of satellite TI by fusing satellite multi-spectral images in the visible-near-infrared (VIS-NIR) range; 3) increase the capacity of aerial TI by fusing satellite multi-spectral images in the VIS-NIR range. The scientific and engineering basis of each of the approaches is described together with initial results.</description><identifier>ISSN: 2040-4700</identifier><identifier>EISSN: 2040-4719</identifier><identifier>DOI: 10.1017/S2040470017001352</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Agricultural engineering ; Agricultural management ; Agriculture ; Agronomy ; Algorithms ; Boundaries ; Cameras ; Canopies ; Climatology ; Crop growth ; Crops ; Detection ; Economics ; Environmental conditions ; Environmental monitoring ; Frames ; Heat detection ; High resolution ; I.R. radiation ; Image processing ; Image resolution ; Information processing ; Infrared photography ; International conferences ; Landsat ; Landsat satellites ; Mapping ; Mathematical analysis ; Nearest-neighbor ; Optics ; Photogrammetry ; Pixels ; Precision Irrigation ; Remote sensing ; Restoration ; Satellites ; Soil moisture ; Spectra ; Temperature effects ; Vegetation ; Velocity ; Visual system ; Water management ; Water stress ; Weather</subject><ispartof>Advances in animal biosciences, 2017-07, Vol.8 (2), p.546-550</ispartof><rights>The Animal Consortium 2017</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1622-71f03d3a71fd5fb93b88d51248d8f496b9ad921215fc8b7955afbba7ce5c4cbf3</citedby><cites>FETCH-LOGICAL-c1622-71f03d3a71fd5fb93b88d51248d8f496b9ad921215fc8b7955afbba7ce5c4cbf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S2040470017001352/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids></links><search><creatorcontrib>Cohen, Y.</creatorcontrib><creatorcontrib>Agam, N.</creatorcontrib><creatorcontrib>Klapp, I.</creatorcontrib><creatorcontrib>Karnieli, A.</creatorcontrib><creatorcontrib>Beeri, O.</creatorcontrib><creatorcontrib>Alchanatis, V.</creatorcontrib><creatorcontrib>Sochen, N.</creatorcontrib><title>Future approaches to facilitate large-scale adoption of thermal based images as key input in the production of dynamic irrigation management zones</title><title>Advances in animal biosciences</title><addtitle>Advances in Animal Biosciences</addtitle><description>To use VRI systems, a field is divided into irrigation management zones (IMZs). While IMZs are dynamic in nature, most of IMZs prescription maps are static. High-resolution thermal images (TI) coupled with measured atmospheric conditions have been utilized to map the within-field water status variability and to delineate in-season IMZs. Unfortunately, spaceborne TIs have coarse spatial resolution and aerial platforms require substantial financial investments, which may inhibit their large-scale adoption. Three approaches are proposed to facilitate large-scale adoption of TI-based IMZs: 1) increase of the capacity of aerial TI by enhancing their spatial resolution; 2) sharpening the spatial resolution of satellite TI by fusing satellite multi-spectral images in the visible-near-infrared (VIS-NIR) range; 3) increase the capacity of aerial TI by fusing satellite multi-spectral images in the VIS-NIR range. The scientific and engineering basis of each of the approaches is described together with initial results.</description><subject>Agricultural engineering</subject><subject>Agricultural management</subject><subject>Agriculture</subject><subject>Agronomy</subject><subject>Algorithms</subject><subject>Boundaries</subject><subject>Cameras</subject><subject>Canopies</subject><subject>Climatology</subject><subject>Crop growth</subject><subject>Crops</subject><subject>Detection</subject><subject>Economics</subject><subject>Environmental conditions</subject><subject>Environmental monitoring</subject><subject>Frames</subject><subject>Heat detection</subject><subject>High resolution</subject><subject>I.R. radiation</subject><subject>Image processing</subject><subject>Image resolution</subject><subject>Information processing</subject><subject>Infrared photography</subject><subject>International conferences</subject><subject>Landsat</subject><subject>Landsat satellites</subject><subject>Mapping</subject><subject>Mathematical analysis</subject><subject>Nearest-neighbor</subject><subject>Optics</subject><subject>Photogrammetry</subject><subject>Pixels</subject><subject>Precision Irrigation</subject><subject>Remote sensing</subject><subject>Restoration</subject><subject>Satellites</subject><subject>Soil moisture</subject><subject>Spectra</subject><subject>Temperature effects</subject><subject>Vegetation</subject><subject>Velocity</subject><subject>Visual system</subject><subject>Water management</subject><subject>Water stress</subject><subject>Weather</subject><issn>2040-4700</issn><issn>2040-4719</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kN9KwzAUxosoOOYewLuA19WkaZb2UoZTQfBCvS4n_7bMtqlJejEfwyc2c1MEMZCcw-H7fUm-LDsn-JJgwq-eClzikuPUp01ZcZRNdqO85KQ-_ukxPs1mIWxwWqzCtOKT7GM5xtFrBMPgHci1Dig6ZEDa1kaIGrXgVzoPEtokUm6I1vXIGRTX2nfQIgFBK2Q7WCUUAnrVW2T7YYzp3IlQ8lWj_MbUtofOSmS9tyv4mnbQJ7jTfUTvrtfhLDsx0AY9O9Rp9rK8eV7c5Q-Pt_eL64dcknlR5JwYTBWFVBUzoqaiqhQjRVmpypT1XNSg6oIUhBlZCV4zBkYI4FIzWUph6DS72PumF76NOsRm40bfpysbUqfEeElxkVRkr5LeheC1aQaffuu3DcHNLv3mT_qJoQcGOuGtWulf1v9Sn6gpiS4</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Cohen, Y.</creator><creator>Agam, N.</creator><creator>Klapp, I.</creator><creator>Karnieli, A.</creator><creator>Beeri, O.</creator><creator>Alchanatis, V.</creator><creator>Sochen, N.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20170701</creationdate><title>Future approaches to facilitate large-scale adoption of thermal based images as key input in the production of dynamic irrigation management zones</title><author>Cohen, Y. ; Agam, N. ; Klapp, I. ; Karnieli, A. ; Beeri, O. ; Alchanatis, V. ; Sochen, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1622-71f03d3a71fd5fb93b88d51248d8f496b9ad921215fc8b7955afbba7ce5c4cbf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Agricultural engineering</topic><topic>Agricultural management</topic><topic>Agriculture</topic><topic>Agronomy</topic><topic>Algorithms</topic><topic>Boundaries</topic><topic>Cameras</topic><topic>Canopies</topic><topic>Climatology</topic><topic>Crop growth</topic><topic>Crops</topic><topic>Detection</topic><topic>Economics</topic><topic>Environmental conditions</topic><topic>Environmental monitoring</topic><topic>Frames</topic><topic>Heat detection</topic><topic>High resolution</topic><topic>I.R. radiation</topic><topic>Image processing</topic><topic>Image resolution</topic><topic>Information processing</topic><topic>Infrared photography</topic><topic>International conferences</topic><topic>Landsat</topic><topic>Landsat satellites</topic><topic>Mapping</topic><topic>Mathematical analysis</topic><topic>Nearest-neighbor</topic><topic>Optics</topic><topic>Photogrammetry</topic><topic>Pixels</topic><topic>Precision Irrigation</topic><topic>Remote sensing</topic><topic>Restoration</topic><topic>Satellites</topic><topic>Soil moisture</topic><topic>Spectra</topic><topic>Temperature effects</topic><topic>Vegetation</topic><topic>Velocity</topic><topic>Visual system</topic><topic>Water management</topic><topic>Water stress</topic><topic>Weather</topic><toplevel>online_resources</toplevel><creatorcontrib>Cohen, Y.</creatorcontrib><creatorcontrib>Agam, N.</creatorcontrib><creatorcontrib>Klapp, I.</creatorcontrib><creatorcontrib>Karnieli, A.</creatorcontrib><creatorcontrib>Beeri, O.</creatorcontrib><creatorcontrib>Alchanatis, V.</creatorcontrib><creatorcontrib>Sochen, N.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Advances in animal biosciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cohen, Y.</au><au>Agam, N.</au><au>Klapp, I.</au><au>Karnieli, A.</au><au>Beeri, O.</au><au>Alchanatis, V.</au><au>Sochen, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Future approaches to facilitate large-scale adoption of thermal based images as key input in the production of dynamic irrigation management zones</atitle><jtitle>Advances in animal biosciences</jtitle><addtitle>Advances in Animal Biosciences</addtitle><date>2017-07-01</date><risdate>2017</risdate><volume>8</volume><issue>2</issue><spage>546</spage><epage>550</epage><pages>546-550</pages><issn>2040-4700</issn><eissn>2040-4719</eissn><abstract>To use VRI systems, a field is divided into irrigation management zones (IMZs). While IMZs are dynamic in nature, most of IMZs prescription maps are static. High-resolution thermal images (TI) coupled with measured atmospheric conditions have been utilized to map the within-field water status variability and to delineate in-season IMZs. Unfortunately, spaceborne TIs have coarse spatial resolution and aerial platforms require substantial financial investments, which may inhibit their large-scale adoption. Three approaches are proposed to facilitate large-scale adoption of TI-based IMZs: 1) increase of the capacity of aerial TI by enhancing their spatial resolution; 2) sharpening the spatial resolution of satellite TI by fusing satellite multi-spectral images in the visible-near-infrared (VIS-NIR) range; 3) increase the capacity of aerial TI by fusing satellite multi-spectral images in the VIS-NIR range. The scientific and engineering basis of each of the approaches is described together with initial results.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S2040470017001352</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2040-4700
ispartof Advances in animal biosciences, 2017-07, Vol.8 (2), p.546-550
issn 2040-4700
2040-4719
language eng
recordid cdi_proquest_journals_1904074302
source Cambridge University Press Journals Complete
subjects Agricultural engineering
Agricultural management
Agriculture
Agronomy
Algorithms
Boundaries
Cameras
Canopies
Climatology
Crop growth
Crops
Detection
Economics
Environmental conditions
Environmental monitoring
Frames
Heat detection
High resolution
I.R. radiation
Image processing
Image resolution
Information processing
Infrared photography
International conferences
Landsat
Landsat satellites
Mapping
Mathematical analysis
Nearest-neighbor
Optics
Photogrammetry
Pixels
Precision Irrigation
Remote sensing
Restoration
Satellites
Soil moisture
Spectra
Temperature effects
Vegetation
Velocity
Visual system
Water management
Water stress
Weather
title Future approaches to facilitate large-scale adoption of thermal based images as key input in the production of dynamic irrigation management zones
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T05%3A26%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Future%20approaches%20to%20facilitate%20large-scale%20adoption%20of%20thermal%20based%20images%20as%20key%20input%20in%20the%20production%20of%20dynamic%20irrigation%20management%20zones&rft.jtitle=Advances%20in%20animal%20biosciences&rft.au=Cohen,%20Y.&rft.date=2017-07-01&rft.volume=8&rft.issue=2&rft.spage=546&rft.epage=550&rft.pages=546-550&rft.issn=2040-4700&rft.eissn=2040-4719&rft_id=info:doi/10.1017/S2040470017001352&rft_dat=%3Cproquest_cross%3E1904074302%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1904074302&rft_id=info:pmid/&rft_cupid=10_1017_S2040470017001352&rfr_iscdi=true