Future approaches to facilitate large-scale adoption of thermal based images as key input in the production of dynamic irrigation management zones
To use VRI systems, a field is divided into irrigation management zones (IMZs). While IMZs are dynamic in nature, most of IMZs prescription maps are static. High-resolution thermal images (TI) coupled with measured atmospheric conditions have been utilized to map the within-field water status variab...
Gespeichert in:
Veröffentlicht in: | Advances in animal biosciences 2017-07, Vol.8 (2), p.546-550 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 550 |
---|---|
container_issue | 2 |
container_start_page | 546 |
container_title | Advances in animal biosciences |
container_volume | 8 |
creator | Cohen, Y. Agam, N. Klapp, I. Karnieli, A. Beeri, O. Alchanatis, V. Sochen, N. |
description | To use VRI systems, a field is divided into irrigation management zones (IMZs). While IMZs are dynamic in nature, most of IMZs prescription maps are static. High-resolution thermal images (TI) coupled with measured atmospheric conditions have been utilized to map the within-field water status variability and to delineate in-season IMZs. Unfortunately, spaceborne TIs have coarse spatial resolution and aerial platforms require substantial financial investments, which may inhibit their large-scale adoption. Three approaches are proposed to facilitate large-scale adoption of TI-based IMZs: 1) increase of the capacity of aerial TI by enhancing their spatial resolution; 2) sharpening the spatial resolution of satellite TI by fusing satellite multi-spectral images in the visible-near-infrared (VIS-NIR) range; 3) increase the capacity of aerial TI by fusing satellite multi-spectral images in the VIS-NIR range. The scientific and engineering basis of each of the approaches is described together with initial results. |
doi_str_mv | 10.1017/S2040470017001352 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1904074302</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S2040470017001352</cupid><sourcerecordid>1904074302</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1622-71f03d3a71fd5fb93b88d51248d8f496b9ad921215fc8b7955afbba7ce5c4cbf3</originalsourceid><addsrcrecordid>eNp1kN9KwzAUxosoOOYewLuA19WkaZb2UoZTQfBCvS4n_7bMtqlJejEfwyc2c1MEMZCcw-H7fUm-LDsn-JJgwq-eClzikuPUp01ZcZRNdqO85KQ-_ukxPs1mIWxwWqzCtOKT7GM5xtFrBMPgHci1Dig6ZEDa1kaIGrXgVzoPEtokUm6I1vXIGRTX2nfQIgFBK2Q7WCUUAnrVW2T7YYzp3IlQ8lWj_MbUtofOSmS9tyv4mnbQJ7jTfUTvrtfhLDsx0AY9O9Rp9rK8eV7c5Q-Pt_eL64dcknlR5JwYTBWFVBUzoqaiqhQjRVmpypT1XNSg6oIUhBlZCV4zBkYI4FIzWUph6DS72PumF76NOsRm40bfpysbUqfEeElxkVRkr5LeheC1aQaffuu3DcHNLv3mT_qJoQcGOuGtWulf1v9Sn6gpiS4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1904074302</pqid></control><display><type>article</type><title>Future approaches to facilitate large-scale adoption of thermal based images as key input in the production of dynamic irrigation management zones</title><source>Cambridge University Press Journals Complete</source><creator>Cohen, Y. ; Agam, N. ; Klapp, I. ; Karnieli, A. ; Beeri, O. ; Alchanatis, V. ; Sochen, N.</creator><creatorcontrib>Cohen, Y. ; Agam, N. ; Klapp, I. ; Karnieli, A. ; Beeri, O. ; Alchanatis, V. ; Sochen, N.</creatorcontrib><description>To use VRI systems, a field is divided into irrigation management zones (IMZs). While IMZs are dynamic in nature, most of IMZs prescription maps are static. High-resolution thermal images (TI) coupled with measured atmospheric conditions have been utilized to map the within-field water status variability and to delineate in-season IMZs. Unfortunately, spaceborne TIs have coarse spatial resolution and aerial platforms require substantial financial investments, which may inhibit their large-scale adoption. Three approaches are proposed to facilitate large-scale adoption of TI-based IMZs: 1) increase of the capacity of aerial TI by enhancing their spatial resolution; 2) sharpening the spatial resolution of satellite TI by fusing satellite multi-spectral images in the visible-near-infrared (VIS-NIR) range; 3) increase the capacity of aerial TI by fusing satellite multi-spectral images in the VIS-NIR range. The scientific and engineering basis of each of the approaches is described together with initial results.</description><identifier>ISSN: 2040-4700</identifier><identifier>EISSN: 2040-4719</identifier><identifier>DOI: 10.1017/S2040470017001352</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Agricultural engineering ; Agricultural management ; Agriculture ; Agronomy ; Algorithms ; Boundaries ; Cameras ; Canopies ; Climatology ; Crop growth ; Crops ; Detection ; Economics ; Environmental conditions ; Environmental monitoring ; Frames ; Heat detection ; High resolution ; I.R. radiation ; Image processing ; Image resolution ; Information processing ; Infrared photography ; International conferences ; Landsat ; Landsat satellites ; Mapping ; Mathematical analysis ; Nearest-neighbor ; Optics ; Photogrammetry ; Pixels ; Precision Irrigation ; Remote sensing ; Restoration ; Satellites ; Soil moisture ; Spectra ; Temperature effects ; Vegetation ; Velocity ; Visual system ; Water management ; Water stress ; Weather</subject><ispartof>Advances in animal biosciences, 2017-07, Vol.8 (2), p.546-550</ispartof><rights>The Animal Consortium 2017</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1622-71f03d3a71fd5fb93b88d51248d8f496b9ad921215fc8b7955afbba7ce5c4cbf3</citedby><cites>FETCH-LOGICAL-c1622-71f03d3a71fd5fb93b88d51248d8f496b9ad921215fc8b7955afbba7ce5c4cbf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S2040470017001352/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids></links><search><creatorcontrib>Cohen, Y.</creatorcontrib><creatorcontrib>Agam, N.</creatorcontrib><creatorcontrib>Klapp, I.</creatorcontrib><creatorcontrib>Karnieli, A.</creatorcontrib><creatorcontrib>Beeri, O.</creatorcontrib><creatorcontrib>Alchanatis, V.</creatorcontrib><creatorcontrib>Sochen, N.</creatorcontrib><title>Future approaches to facilitate large-scale adoption of thermal based images as key input in the production of dynamic irrigation management zones</title><title>Advances in animal biosciences</title><addtitle>Advances in Animal Biosciences</addtitle><description>To use VRI systems, a field is divided into irrigation management zones (IMZs). While IMZs are dynamic in nature, most of IMZs prescription maps are static. High-resolution thermal images (TI) coupled with measured atmospheric conditions have been utilized to map the within-field water status variability and to delineate in-season IMZs. Unfortunately, spaceborne TIs have coarse spatial resolution and aerial platforms require substantial financial investments, which may inhibit their large-scale adoption. Three approaches are proposed to facilitate large-scale adoption of TI-based IMZs: 1) increase of the capacity of aerial TI by enhancing their spatial resolution; 2) sharpening the spatial resolution of satellite TI by fusing satellite multi-spectral images in the visible-near-infrared (VIS-NIR) range; 3) increase the capacity of aerial TI by fusing satellite multi-spectral images in the VIS-NIR range. The scientific and engineering basis of each of the approaches is described together with initial results.</description><subject>Agricultural engineering</subject><subject>Agricultural management</subject><subject>Agriculture</subject><subject>Agronomy</subject><subject>Algorithms</subject><subject>Boundaries</subject><subject>Cameras</subject><subject>Canopies</subject><subject>Climatology</subject><subject>Crop growth</subject><subject>Crops</subject><subject>Detection</subject><subject>Economics</subject><subject>Environmental conditions</subject><subject>Environmental monitoring</subject><subject>Frames</subject><subject>Heat detection</subject><subject>High resolution</subject><subject>I.R. radiation</subject><subject>Image processing</subject><subject>Image resolution</subject><subject>Information processing</subject><subject>Infrared photography</subject><subject>International conferences</subject><subject>Landsat</subject><subject>Landsat satellites</subject><subject>Mapping</subject><subject>Mathematical analysis</subject><subject>Nearest-neighbor</subject><subject>Optics</subject><subject>Photogrammetry</subject><subject>Pixels</subject><subject>Precision Irrigation</subject><subject>Remote sensing</subject><subject>Restoration</subject><subject>Satellites</subject><subject>Soil moisture</subject><subject>Spectra</subject><subject>Temperature effects</subject><subject>Vegetation</subject><subject>Velocity</subject><subject>Visual system</subject><subject>Water management</subject><subject>Water stress</subject><subject>Weather</subject><issn>2040-4700</issn><issn>2040-4719</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kN9KwzAUxosoOOYewLuA19WkaZb2UoZTQfBCvS4n_7bMtqlJejEfwyc2c1MEMZCcw-H7fUm-LDsn-JJgwq-eClzikuPUp01ZcZRNdqO85KQ-_ukxPs1mIWxwWqzCtOKT7GM5xtFrBMPgHci1Dig6ZEDa1kaIGrXgVzoPEtokUm6I1vXIGRTX2nfQIgFBK2Q7WCUUAnrVW2T7YYzp3IlQ8lWj_MbUtofOSmS9tyv4mnbQJ7jTfUTvrtfhLDsx0AY9O9Rp9rK8eV7c5Q-Pt_eL64dcknlR5JwYTBWFVBUzoqaiqhQjRVmpypT1XNSg6oIUhBlZCV4zBkYI4FIzWUph6DS72PumF76NOsRm40bfpysbUqfEeElxkVRkr5LeheC1aQaffuu3DcHNLv3mT_qJoQcGOuGtWulf1v9Sn6gpiS4</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Cohen, Y.</creator><creator>Agam, N.</creator><creator>Klapp, I.</creator><creator>Karnieli, A.</creator><creator>Beeri, O.</creator><creator>Alchanatis, V.</creator><creator>Sochen, N.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20170701</creationdate><title>Future approaches to facilitate large-scale adoption of thermal based images as key input in the production of dynamic irrigation management zones</title><author>Cohen, Y. ; Agam, N. ; Klapp, I. ; Karnieli, A. ; Beeri, O. ; Alchanatis, V. ; Sochen, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1622-71f03d3a71fd5fb93b88d51248d8f496b9ad921215fc8b7955afbba7ce5c4cbf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Agricultural engineering</topic><topic>Agricultural management</topic><topic>Agriculture</topic><topic>Agronomy</topic><topic>Algorithms</topic><topic>Boundaries</topic><topic>Cameras</topic><topic>Canopies</topic><topic>Climatology</topic><topic>Crop growth</topic><topic>Crops</topic><topic>Detection</topic><topic>Economics</topic><topic>Environmental conditions</topic><topic>Environmental monitoring</topic><topic>Frames</topic><topic>Heat detection</topic><topic>High resolution</topic><topic>I.R. radiation</topic><topic>Image processing</topic><topic>Image resolution</topic><topic>Information processing</topic><topic>Infrared photography</topic><topic>International conferences</topic><topic>Landsat</topic><topic>Landsat satellites</topic><topic>Mapping</topic><topic>Mathematical analysis</topic><topic>Nearest-neighbor</topic><topic>Optics</topic><topic>Photogrammetry</topic><topic>Pixels</topic><topic>Precision Irrigation</topic><topic>Remote sensing</topic><topic>Restoration</topic><topic>Satellites</topic><topic>Soil moisture</topic><topic>Spectra</topic><topic>Temperature effects</topic><topic>Vegetation</topic><topic>Velocity</topic><topic>Visual system</topic><topic>Water management</topic><topic>Water stress</topic><topic>Weather</topic><toplevel>online_resources</toplevel><creatorcontrib>Cohen, Y.</creatorcontrib><creatorcontrib>Agam, N.</creatorcontrib><creatorcontrib>Klapp, I.</creatorcontrib><creatorcontrib>Karnieli, A.</creatorcontrib><creatorcontrib>Beeri, O.</creatorcontrib><creatorcontrib>Alchanatis, V.</creatorcontrib><creatorcontrib>Sochen, N.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Advances in animal biosciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cohen, Y.</au><au>Agam, N.</au><au>Klapp, I.</au><au>Karnieli, A.</au><au>Beeri, O.</au><au>Alchanatis, V.</au><au>Sochen, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Future approaches to facilitate large-scale adoption of thermal based images as key input in the production of dynamic irrigation management zones</atitle><jtitle>Advances in animal biosciences</jtitle><addtitle>Advances in Animal Biosciences</addtitle><date>2017-07-01</date><risdate>2017</risdate><volume>8</volume><issue>2</issue><spage>546</spage><epage>550</epage><pages>546-550</pages><issn>2040-4700</issn><eissn>2040-4719</eissn><abstract>To use VRI systems, a field is divided into irrigation management zones (IMZs). While IMZs are dynamic in nature, most of IMZs prescription maps are static. High-resolution thermal images (TI) coupled with measured atmospheric conditions have been utilized to map the within-field water status variability and to delineate in-season IMZs. Unfortunately, spaceborne TIs have coarse spatial resolution and aerial platforms require substantial financial investments, which may inhibit their large-scale adoption. Three approaches are proposed to facilitate large-scale adoption of TI-based IMZs: 1) increase of the capacity of aerial TI by enhancing their spatial resolution; 2) sharpening the spatial resolution of satellite TI by fusing satellite multi-spectral images in the visible-near-infrared (VIS-NIR) range; 3) increase the capacity of aerial TI by fusing satellite multi-spectral images in the VIS-NIR range. The scientific and engineering basis of each of the approaches is described together with initial results.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S2040470017001352</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2040-4700 |
ispartof | Advances in animal biosciences, 2017-07, Vol.8 (2), p.546-550 |
issn | 2040-4700 2040-4719 |
language | eng |
recordid | cdi_proquest_journals_1904074302 |
source | Cambridge University Press Journals Complete |
subjects | Agricultural engineering Agricultural management Agriculture Agronomy Algorithms Boundaries Cameras Canopies Climatology Crop growth Crops Detection Economics Environmental conditions Environmental monitoring Frames Heat detection High resolution I.R. radiation Image processing Image resolution Information processing Infrared photography International conferences Landsat Landsat satellites Mapping Mathematical analysis Nearest-neighbor Optics Photogrammetry Pixels Precision Irrigation Remote sensing Restoration Satellites Soil moisture Spectra Temperature effects Vegetation Velocity Visual system Water management Water stress Weather |
title | Future approaches to facilitate large-scale adoption of thermal based images as key input in the production of dynamic irrigation management zones |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T05%3A26%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Future%20approaches%20to%20facilitate%20large-scale%20adoption%20of%20thermal%20based%20images%20as%20key%20input%20in%20the%20production%20of%20dynamic%20irrigation%20management%20zones&rft.jtitle=Advances%20in%20animal%20biosciences&rft.au=Cohen,%20Y.&rft.date=2017-07-01&rft.volume=8&rft.issue=2&rft.spage=546&rft.epage=550&rft.pages=546-550&rft.issn=2040-4700&rft.eissn=2040-4719&rft_id=info:doi/10.1017/S2040470017001352&rft_dat=%3Cproquest_cross%3E1904074302%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1904074302&rft_id=info:pmid/&rft_cupid=10_1017_S2040470017001352&rfr_iscdi=true |