Orange tree canopy volume estimation by manual and LiDAR-based methods

LiDAR (Light detection and ranging) technology is an alternative to current manual methods of canopy geometry estimations in orange trees. The objective of this work was to compare different types of canopy volume estimations of orange trees, some inspired on manual methods and others based on a LiD...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in animal biosciences 2017-07, Vol.8 (2), p.477-480
Hauptverfasser: Colaço, A. F., Trevisan, R. G., Molin, J. P., Rosell-Polo, J. R., Escolà, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 480
container_issue 2
container_start_page 477
container_title Advances in animal biosciences
container_volume 8
creator Colaço, A. F.
Trevisan, R. G.
Molin, J. P.
Rosell-Polo, J. R.
Escolà, A.
description LiDAR (Light detection and ranging) technology is an alternative to current manual methods of canopy geometry estimations in orange trees. The objective of this work was to compare different types of canopy volume estimations of orange trees, some inspired on manual methods and others based on a LiDAR sensor. A point cloud was generated for 25 individual trees using a laser scanning system. The convex-hull and the alpha-shape surface reconstruction algorithms were tested. LiDAR derived models are able to represent orange trees more accurately than traditional methods. However, results differ significantly from the current manual method. In addition, different 3D modeling algorithms resulted in different canopy volume estimations. Therefore, a new standard method should be developed and established.
doi_str_mv 10.1017/S2040470017001133
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1904073776</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S2040470017001133</cupid><sourcerecordid>1904073776</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2053-9314e9cac7a4bd5b1c7159567be24287a851f932dc65aa00d48401fc7be62553</originalsourceid><addsrcrecordid>eNp1UFFLwzAQDqLgmPsBvgV8rl6apGkfx3QqDAa693JN0tnRNjNphf17MzZEEA-O-7i77-6-I-SWwT0Dph7eUxAgFEQcnXF-QSbHVCIUKy5_MMA1mYWwg2gyB56rCVmuPfZbSwdvLdXYu_2Bfrl27Cy1YWg6HBrX0-pAO-xHbCn2hq6ax_lbUmGwhnZ2-HAm3JCrGttgZ-c4JZvl02bxkqzWz6-L-SrRKUieFJwJW2jUCkVlZMW0YrKQmapsKtJcYS5ZXfDU6EwiAhiRC2C1jvUslZJPyd1p7N67zzEeWO7c6Pu4sWRFFKm4UlnsYqcu7V0I3tbl3kcl_lAyKI8PK_88LHL4mYNd5Ruztb9G_8v6Bi1Uamc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1904073776</pqid></control><display><type>article</type><title>Orange tree canopy volume estimation by manual and LiDAR-based methods</title><source>Cambridge University Press Journals Complete</source><creator>Colaço, A. F. ; Trevisan, R. G. ; Molin, J. P. ; Rosell-Polo, J. R. ; Escolà, A.</creator><creatorcontrib>Colaço, A. F. ; Trevisan, R. G. ; Molin, J. P. ; Rosell-Polo, J. R. ; Escolà, A.</creatorcontrib><description>LiDAR (Light detection and ranging) technology is an alternative to current manual methods of canopy geometry estimations in orange trees. The objective of this work was to compare different types of canopy volume estimations of orange trees, some inspired on manual methods and others based on a LiDAR sensor. A point cloud was generated for 25 individual trees using a laser scanning system. The convex-hull and the alpha-shape surface reconstruction algorithms were tested. LiDAR derived models are able to represent orange trees more accurately than traditional methods. However, results differ significantly from the current manual method. In addition, different 3D modeling algorithms resulted in different canopy volume estimations. Therefore, a new standard method should be developed and established.</description><identifier>ISSN: 2040-4700</identifier><identifier>EISSN: 2040-4719</identifier><identifier>DOI: 10.1017/S2040470017001133</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Algorithms ; Alpha shapes ; Canopies ; Data processing ; Fruit trees ; Fruits ; Herbivores ; Horticulture ; Lasers ; Lidar ; Methods ; Model testing ; Permits ; Precision Horticulture and Viticulture ; Sensors ; Software ; Three dimensional models ; Trees</subject><ispartof>Advances in animal biosciences, 2017-07, Vol.8 (2), p.477-480</ispartof><rights>The Animal Consortium 2017</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2053-9314e9cac7a4bd5b1c7159567be24287a851f932dc65aa00d48401fc7be62553</citedby><cites>FETCH-LOGICAL-c2053-9314e9cac7a4bd5b1c7159567be24287a851f932dc65aa00d48401fc7be62553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S2040470017001133/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids></links><search><creatorcontrib>Colaço, A. F.</creatorcontrib><creatorcontrib>Trevisan, R. G.</creatorcontrib><creatorcontrib>Molin, J. P.</creatorcontrib><creatorcontrib>Rosell-Polo, J. R.</creatorcontrib><creatorcontrib>Escolà, A.</creatorcontrib><title>Orange tree canopy volume estimation by manual and LiDAR-based methods</title><title>Advances in animal biosciences</title><addtitle>Advances in Animal Biosciences</addtitle><description>LiDAR (Light detection and ranging) technology is an alternative to current manual methods of canopy geometry estimations in orange trees. The objective of this work was to compare different types of canopy volume estimations of orange trees, some inspired on manual methods and others based on a LiDAR sensor. A point cloud was generated for 25 individual trees using a laser scanning system. The convex-hull and the alpha-shape surface reconstruction algorithms were tested. LiDAR derived models are able to represent orange trees more accurately than traditional methods. However, results differ significantly from the current manual method. In addition, different 3D modeling algorithms resulted in different canopy volume estimations. Therefore, a new standard method should be developed and established.</description><subject>Algorithms</subject><subject>Alpha shapes</subject><subject>Canopies</subject><subject>Data processing</subject><subject>Fruit trees</subject><subject>Fruits</subject><subject>Herbivores</subject><subject>Horticulture</subject><subject>Lasers</subject><subject>Lidar</subject><subject>Methods</subject><subject>Model testing</subject><subject>Permits</subject><subject>Precision Horticulture and Viticulture</subject><subject>Sensors</subject><subject>Software</subject><subject>Three dimensional models</subject><subject>Trees</subject><issn>2040-4700</issn><issn>2040-4719</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1UFFLwzAQDqLgmPsBvgV8rl6apGkfx3QqDAa693JN0tnRNjNphf17MzZEEA-O-7i77-6-I-SWwT0Dph7eUxAgFEQcnXF-QSbHVCIUKy5_MMA1mYWwg2gyB56rCVmuPfZbSwdvLdXYu_2Bfrl27Cy1YWg6HBrX0-pAO-xHbCn2hq6ax_lbUmGwhnZ2-HAm3JCrGttgZ-c4JZvl02bxkqzWz6-L-SrRKUieFJwJW2jUCkVlZMW0YrKQmapsKtJcYS5ZXfDU6EwiAhiRC2C1jvUslZJPyd1p7N67zzEeWO7c6Pu4sWRFFKm4UlnsYqcu7V0I3tbl3kcl_lAyKI8PK_88LHL4mYNd5Ruztb9G_8v6Bi1Uamc</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Colaço, A. F.</creator><creator>Trevisan, R. G.</creator><creator>Molin, J. P.</creator><creator>Rosell-Polo, J. R.</creator><creator>Escolà, A.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20170701</creationdate><title>Orange tree canopy volume estimation by manual and LiDAR-based methods</title><author>Colaço, A. F. ; Trevisan, R. G. ; Molin, J. P. ; Rosell-Polo, J. R. ; Escolà, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2053-9314e9cac7a4bd5b1c7159567be24287a851f932dc65aa00d48401fc7be62553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Alpha shapes</topic><topic>Canopies</topic><topic>Data processing</topic><topic>Fruit trees</topic><topic>Fruits</topic><topic>Herbivores</topic><topic>Horticulture</topic><topic>Lasers</topic><topic>Lidar</topic><topic>Methods</topic><topic>Model testing</topic><topic>Permits</topic><topic>Precision Horticulture and Viticulture</topic><topic>Sensors</topic><topic>Software</topic><topic>Three dimensional models</topic><topic>Trees</topic><toplevel>online_resources</toplevel><creatorcontrib>Colaço, A. F.</creatorcontrib><creatorcontrib>Trevisan, R. G.</creatorcontrib><creatorcontrib>Molin, J. P.</creatorcontrib><creatorcontrib>Rosell-Polo, J. R.</creatorcontrib><creatorcontrib>Escolà, A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Advances in animal biosciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Colaço, A. F.</au><au>Trevisan, R. G.</au><au>Molin, J. P.</au><au>Rosell-Polo, J. R.</au><au>Escolà, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Orange tree canopy volume estimation by manual and LiDAR-based methods</atitle><jtitle>Advances in animal biosciences</jtitle><addtitle>Advances in Animal Biosciences</addtitle><date>2017-07-01</date><risdate>2017</risdate><volume>8</volume><issue>2</issue><spage>477</spage><epage>480</epage><pages>477-480</pages><issn>2040-4700</issn><eissn>2040-4719</eissn><abstract>LiDAR (Light detection and ranging) technology is an alternative to current manual methods of canopy geometry estimations in orange trees. The objective of this work was to compare different types of canopy volume estimations of orange trees, some inspired on manual methods and others based on a LiDAR sensor. A point cloud was generated for 25 individual trees using a laser scanning system. The convex-hull and the alpha-shape surface reconstruction algorithms were tested. LiDAR derived models are able to represent orange trees more accurately than traditional methods. However, results differ significantly from the current manual method. In addition, different 3D modeling algorithms resulted in different canopy volume estimations. Therefore, a new standard method should be developed and established.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S2040470017001133</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2040-4700
ispartof Advances in animal biosciences, 2017-07, Vol.8 (2), p.477-480
issn 2040-4700
2040-4719
language eng
recordid cdi_proquest_journals_1904073776
source Cambridge University Press Journals Complete
subjects Algorithms
Alpha shapes
Canopies
Data processing
Fruit trees
Fruits
Herbivores
Horticulture
Lasers
Lidar
Methods
Model testing
Permits
Precision Horticulture and Viticulture
Sensors
Software
Three dimensional models
Trees
title Orange tree canopy volume estimation by manual and LiDAR-based methods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T09%3A41%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Orange%20tree%20canopy%20volume%20estimation%20by%20manual%20and%20LiDAR-based%20methods&rft.jtitle=Advances%20in%20animal%20biosciences&rft.au=Cola%C3%A7o,%20A.%20F.&rft.date=2017-07-01&rft.volume=8&rft.issue=2&rft.spage=477&rft.epage=480&rft.pages=477-480&rft.issn=2040-4700&rft.eissn=2040-4719&rft_id=info:doi/10.1017/S2040470017001133&rft_dat=%3Cproquest_cross%3E1904073776%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1904073776&rft_id=info:pmid/&rft_cupid=10_1017_S2040470017001133&rfr_iscdi=true