Electride: from computational characterization to theoretical design

Electrides are a class of materials in which anionic electrons are spatially separated from the positively charged crystalline framework. With such a unique structure, electrides show great potential in various applications, such as superconductivity, electronics, and catalysis. A number of organic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wiley interdisciplinary reviews. Computational molecular science 2016-07, Vol.6 (4), p.430-440
Hauptverfasser: Zhao, Songtao, Kan, Erjun, Li, Zhenyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 440
container_issue 4
container_start_page 430
container_title Wiley interdisciplinary reviews. Computational molecular science
container_volume 6
creator Zhao, Songtao
Kan, Erjun
Li, Zhenyu
description Electrides are a class of materials in which anionic electrons are spatially separated from the positively charged crystalline framework. With such a unique structure, electrides show great potential in various applications, such as superconductivity, electronics, and catalysis. A number of organic and inorganic electrides have been successfully synthesized in experiment, and their novel electronic structures are studied both computationally and experimentally. Computational characterization can provide information which is difficult to be obtained from experiment. In electronic structure calculations, charge density, noncovalent interaction (NCI) index, electron localization function (ELF), and electrostatic potential (ESP) can be analyzed to identify anionic electrons in confined space. On the other hand, theoretical studies can also be used to design new electrides, such as in a recent instance of two‐dimensional (2D) electride screening. Alternatively, new applications and novel electron systems based on electrides can be explored theoretically. As an example, based on Ca2N electride, an intrinsic 2D electron gas system in free space (2DEG‐FS) has been proposed. With the aid of computational characterization and theoretical design, electride study will continue to be an important field in materials science. WIREs Comput Mol Sci 2016, 6:430–440. doi: 10.1002/wcms.1258 This article is categorized under: Structure and Mechanism > Computational Materials Science
doi_str_mv 10.1002/wcms.1258
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1903938055</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4095074181</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4998-edb62100695bd4908b024ef18a21b72f921ad277ea7855217d482b3330bdd9fa3</originalsourceid><addsrcrecordid>eNp9kE9PAjEQxRujiUQ5-A028eRhoX-229abQUAN4gENxkvT3e1KcaHYliB-eheXcNO5zGTm9yYvD4ALBDsIQtzd5AvfQZjyI9BCjIoYcp4cH2aWnoK293NYVyIQJqgFbvuVzoMzhb6OSmcXUW4Xq3VQwdilqqJ8ppzKg3bm-3cVBRuFmbZOB5PX90J78748Byelqrxu7_sZeBn0n3t38ehpeN-7GcV5IgSPdZGluDaaCpoViYA8gzjRJeIKo4zhUmCkCsyYVoxTihErEo4zQgjMikKUipyBy-bvytnPtfZBzu3a1T69RAISQTik9F-KCY5RShmrqauGyp313ulSrpxZKLeVCMpdmnKXptylWbPdht2YSm__BuW09zjZK-JGYXzQXweFch8yZYRROR0PZTIR44cBfJVv5AdlDoTI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1798216577</pqid></control><display><type>article</type><title>Electride: from computational characterization to theoretical design</title><source>Access via Wiley Online Library</source><creator>Zhao, Songtao ; Kan, Erjun ; Li, Zhenyu</creator><creatorcontrib>Zhao, Songtao ; Kan, Erjun ; Li, Zhenyu</creatorcontrib><description>Electrides are a class of materials in which anionic electrons are spatially separated from the positively charged crystalline framework. With such a unique structure, electrides show great potential in various applications, such as superconductivity, electronics, and catalysis. A number of organic and inorganic electrides have been successfully synthesized in experiment, and their novel electronic structures are studied both computationally and experimentally. Computational characterization can provide information which is difficult to be obtained from experiment. In electronic structure calculations, charge density, noncovalent interaction (NCI) index, electron localization function (ELF), and electrostatic potential (ESP) can be analyzed to identify anionic electrons in confined space. On the other hand, theoretical studies can also be used to design new electrides, such as in a recent instance of two‐dimensional (2D) electride screening. Alternatively, new applications and novel electron systems based on electrides can be explored theoretically. As an example, based on Ca2N electride, an intrinsic 2D electron gas system in free space (2DEG‐FS) has been proposed. With the aid of computational characterization and theoretical design, electride study will continue to be an important field in materials science. WIREs Comput Mol Sci 2016, 6:430–440. doi: 10.1002/wcms.1258 This article is categorized under: Structure and Mechanism &gt; Computational Materials Science</description><identifier>ISSN: 1759-0876</identifier><identifier>EISSN: 1759-0884</identifier><identifier>DOI: 10.1002/wcms.1258</identifier><language>eng</language><publisher>Hoboken, USA: Wiley Periodicals, Inc</publisher><subject>Anions ; Catalysis ; Catalysts ; Charge density ; Computation ; Computer applications ; Crystal structure ; Design ; Electron gas ; Electronic structure ; Electrostatic properties ; Frameworks ; Localization ; Materials science ; Materials technology ; Superconductivity</subject><ispartof>Wiley interdisciplinary reviews. Computational molecular science, 2016-07, Vol.6 (4), p.430-440</ispartof><rights>2016 John Wiley &amp; Sons, Ltd</rights><rights>2016 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4998-edb62100695bd4908b024ef18a21b72f921ad277ea7855217d482b3330bdd9fa3</citedby><cites>FETCH-LOGICAL-c4998-edb62100695bd4908b024ef18a21b72f921ad277ea7855217d482b3330bdd9fa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fwcms.1258$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fwcms.1258$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27928,27929,45578,45579</link.rule.ids></links><search><creatorcontrib>Zhao, Songtao</creatorcontrib><creatorcontrib>Kan, Erjun</creatorcontrib><creatorcontrib>Li, Zhenyu</creatorcontrib><title>Electride: from computational characterization to theoretical design</title><title>Wiley interdisciplinary reviews. Computational molecular science</title><addtitle>WIREs Comput Mol Sci</addtitle><description>Electrides are a class of materials in which anionic electrons are spatially separated from the positively charged crystalline framework. With such a unique structure, electrides show great potential in various applications, such as superconductivity, electronics, and catalysis. A number of organic and inorganic electrides have been successfully synthesized in experiment, and their novel electronic structures are studied both computationally and experimentally. Computational characterization can provide information which is difficult to be obtained from experiment. In electronic structure calculations, charge density, noncovalent interaction (NCI) index, electron localization function (ELF), and electrostatic potential (ESP) can be analyzed to identify anionic electrons in confined space. On the other hand, theoretical studies can also be used to design new electrides, such as in a recent instance of two‐dimensional (2D) electride screening. Alternatively, new applications and novel electron systems based on electrides can be explored theoretically. As an example, based on Ca2N electride, an intrinsic 2D electron gas system in free space (2DEG‐FS) has been proposed. With the aid of computational characterization and theoretical design, electride study will continue to be an important field in materials science. WIREs Comput Mol Sci 2016, 6:430–440. doi: 10.1002/wcms.1258 This article is categorized under: Structure and Mechanism &gt; Computational Materials Science</description><subject>Anions</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Charge density</subject><subject>Computation</subject><subject>Computer applications</subject><subject>Crystal structure</subject><subject>Design</subject><subject>Electron gas</subject><subject>Electronic structure</subject><subject>Electrostatic properties</subject><subject>Frameworks</subject><subject>Localization</subject><subject>Materials science</subject><subject>Materials technology</subject><subject>Superconductivity</subject><issn>1759-0876</issn><issn>1759-0884</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kE9PAjEQxRujiUQ5-A028eRhoX-229abQUAN4gENxkvT3e1KcaHYliB-eheXcNO5zGTm9yYvD4ALBDsIQtzd5AvfQZjyI9BCjIoYcp4cH2aWnoK293NYVyIQJqgFbvuVzoMzhb6OSmcXUW4Xq3VQwdilqqJ8ppzKg3bm-3cVBRuFmbZOB5PX90J78748Byelqrxu7_sZeBn0n3t38ehpeN-7GcV5IgSPdZGluDaaCpoViYA8gzjRJeIKo4zhUmCkCsyYVoxTihErEo4zQgjMikKUipyBy-bvytnPtfZBzu3a1T69RAISQTik9F-KCY5RShmrqauGyp313ulSrpxZKLeVCMpdmnKXptylWbPdht2YSm__BuW09zjZK-JGYXzQXweFch8yZYRROR0PZTIR44cBfJVv5AdlDoTI</recordid><startdate>201607</startdate><enddate>201607</enddate><creator>Zhao, Songtao</creator><creator>Kan, Erjun</creator><creator>Li, Zhenyu</creator><general>Wiley Periodicals, Inc</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>JQ2</scope><scope>L.G</scope></search><sort><creationdate>201607</creationdate><title>Electride: from computational characterization to theoretical design</title><author>Zhao, Songtao ; Kan, Erjun ; Li, Zhenyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4998-edb62100695bd4908b024ef18a21b72f921ad277ea7855217d482b3330bdd9fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Anions</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Charge density</topic><topic>Computation</topic><topic>Computer applications</topic><topic>Crystal structure</topic><topic>Design</topic><topic>Electron gas</topic><topic>Electronic structure</topic><topic>Electrostatic properties</topic><topic>Frameworks</topic><topic>Localization</topic><topic>Materials science</topic><topic>Materials technology</topic><topic>Superconductivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Songtao</creatorcontrib><creatorcontrib>Kan, Erjun</creatorcontrib><creatorcontrib>Li, Zhenyu</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Wiley interdisciplinary reviews. Computational molecular science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Songtao</au><au>Kan, Erjun</au><au>Li, Zhenyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electride: from computational characterization to theoretical design</atitle><jtitle>Wiley interdisciplinary reviews. Computational molecular science</jtitle><addtitle>WIREs Comput Mol Sci</addtitle><date>2016-07</date><risdate>2016</risdate><volume>6</volume><issue>4</issue><spage>430</spage><epage>440</epage><pages>430-440</pages><issn>1759-0876</issn><eissn>1759-0884</eissn><abstract>Electrides are a class of materials in which anionic electrons are spatially separated from the positively charged crystalline framework. With such a unique structure, electrides show great potential in various applications, such as superconductivity, electronics, and catalysis. A number of organic and inorganic electrides have been successfully synthesized in experiment, and their novel electronic structures are studied both computationally and experimentally. Computational characterization can provide information which is difficult to be obtained from experiment. In electronic structure calculations, charge density, noncovalent interaction (NCI) index, electron localization function (ELF), and electrostatic potential (ESP) can be analyzed to identify anionic electrons in confined space. On the other hand, theoretical studies can also be used to design new electrides, such as in a recent instance of two‐dimensional (2D) electride screening. Alternatively, new applications and novel electron systems based on electrides can be explored theoretically. As an example, based on Ca2N electride, an intrinsic 2D electron gas system in free space (2DEG‐FS) has been proposed. With the aid of computational characterization and theoretical design, electride study will continue to be an important field in materials science. WIREs Comput Mol Sci 2016, 6:430–440. doi: 10.1002/wcms.1258 This article is categorized under: Structure and Mechanism &gt; Computational Materials Science</abstract><cop>Hoboken, USA</cop><pub>Wiley Periodicals, Inc</pub><doi>10.1002/wcms.1258</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1759-0876
ispartof Wiley interdisciplinary reviews. Computational molecular science, 2016-07, Vol.6 (4), p.430-440
issn 1759-0876
1759-0884
language eng
recordid cdi_proquest_journals_1903938055
source Access via Wiley Online Library
subjects Anions
Catalysis
Catalysts
Charge density
Computation
Computer applications
Crystal structure
Design
Electron gas
Electronic structure
Electrostatic properties
Frameworks
Localization
Materials science
Materials technology
Superconductivity
title Electride: from computational characterization to theoretical design
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T10%3A46%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electride:%20from%20computational%20characterization%20to%20theoretical%20design&rft.jtitle=Wiley%20interdisciplinary%20reviews.%20Computational%20molecular%20science&rft.au=Zhao,%20Songtao&rft.date=2016-07&rft.volume=6&rft.issue=4&rft.spage=430&rft.epage=440&rft.pages=430-440&rft.issn=1759-0876&rft.eissn=1759-0884&rft_id=info:doi/10.1002/wcms.1258&rft_dat=%3Cproquest_cross%3E4095074181%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1798216577&rft_id=info:pmid/&rfr_iscdi=true