High-efficiency c-Si based interdigitated point contact back heterojunction solar cells
We report on the modeling and performance optimization studies of point contact back heterojunction (BHJ) solar cells. BHJ solar cell technology is a combination of front heterojunction (a-Si:H/c-Si) solar cell technology and interdigitated back junction c-Si solar cell technology. In this work, bot...
Gespeichert in:
Veröffentlicht in: | Journal of materials science. Materials in electronics 2017-07, Vol.28 (13), p.9697-9703 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9703 |
---|---|
container_issue | 13 |
container_start_page | 9697 |
container_title | Journal of materials science. Materials in electronics |
container_volume | 28 |
creator | Jeyakumar, R. Maiti, T. K. Khader, Mahmoud M. Kandasamy, Nikesh Verma, Amit Nekovei, Reza Kumar, J. Balaji, Nagarajan Yi, Junsin |
description | We report on the modeling and performance optimization studies of point contact back heterojunction (BHJ) solar cells. BHJ solar cell technology is a combination of front heterojunction (a-Si:H/c-Si) solar cell technology and interdigitated back junction c-Si solar cell technology. In this work, both emitter (p
+
-a-Si:H) and back surface field (BSF, n
+
-a-Si:H) were formed at the rear side as an array of interdigitated points, where their respective contacts formed an interdigitated pattern. The gap between p-type and n-type contact fingers was fixed at 10 µm. The n
+
-a-Si:H (i.e. BSF) circular diameter was fixed while emitter size was varied, and vice versa. Simulation was also performed with and without passivation layer underneath emitter and BSF. We also investigated the impact of surface texture size on cell efficiency. By varying surface texture size,
viz
. pyramid height and base width, an efficiency as high as 26.61% was obtained with 761 mV V
oc
, 41 mA/cm
2
J
sc
, and 84.5% FF for a small pyramid structure with 2 µm height and 4 µm base width. |
doi_str_mv | 10.1007/s10854-017-6720-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1903807992</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1903807992</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-b09bf1d20399cb55e1924bfbd6279ce2a0516cfa4250b2b101b178174a31bf7d3</originalsourceid><addsrcrecordid>eNp1kLFOwzAQhi0EEqXwAGyRmA13ThzHI6qAIlViAASbZTt26xKSYqcDb4-rMLAwne70_f9JHyGXCNcIIG4SQsMrCihoLRhQPCIz5KKkVcPej8kMJBe04oydkrOUtgBQV2UzI2_LsN5Q532wwfX2u7D0ORRGJ9cWoR9dbMM6jHrM627Ih8IO_ajtmBH7UWxcJobtvrdjGPoiDZ2OhXVdl87Jidddche_c05e7-9eFku6enp4XNyuqC2xHqkBaTy2DEopreHcoWSV8aatmZDWMQ0ca-t1xTgYZhDQoGhQVLpE40VbzsnV1LuLw9fepVFth33s80uFEsoGhJQsUzhRNg4pRefVLoZPHb8Vgjr4U5M_lf2pgz-FOcOmTMpsv3bxT_O_oR_uO3Mw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1903807992</pqid></control><display><type>article</type><title>High-efficiency c-Si based interdigitated point contact back heterojunction solar cells</title><source>SpringerLink Journals - AutoHoldings</source><creator>Jeyakumar, R. ; Maiti, T. K. ; Khader, Mahmoud M. ; Kandasamy, Nikesh ; Verma, Amit ; Nekovei, Reza ; Kumar, J. ; Balaji, Nagarajan ; Yi, Junsin</creator><creatorcontrib>Jeyakumar, R. ; Maiti, T. K. ; Khader, Mahmoud M. ; Kandasamy, Nikesh ; Verma, Amit ; Nekovei, Reza ; Kumar, J. ; Balaji, Nagarajan ; Yi, Junsin</creatorcontrib><description>We report on the modeling and performance optimization studies of point contact back heterojunction (BHJ) solar cells. BHJ solar cell technology is a combination of front heterojunction (a-Si:H/c-Si) solar cell technology and interdigitated back junction c-Si solar cell technology. In this work, both emitter (p
+
-a-Si:H) and back surface field (BSF, n
+
-a-Si:H) were formed at the rear side as an array of interdigitated points, where their respective contacts formed an interdigitated pattern. The gap between p-type and n-type contact fingers was fixed at 10 µm. The n
+
-a-Si:H (i.e. BSF) circular diameter was fixed while emitter size was varied, and vice versa. Simulation was also performed with and without passivation layer underneath emitter and BSF. We also investigated the impact of surface texture size on cell efficiency. By varying surface texture size,
viz
. pyramid height and base width, an efficiency as high as 26.61% was obtained with 761 mV V
oc
, 41 mA/cm
2
J
sc
, and 84.5% FF for a small pyramid structure with 2 µm height and 4 µm base width.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-017-6720-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Computer simulation ; Efficiency ; Materials Science ; Optical and Electronic Materials ; Photovoltaic cells ; Point contact ; Silicon wafers ; Solar cells ; Surface layers ; Texture</subject><ispartof>Journal of materials science. Materials in electronics, 2017-07, Vol.28 (13), p.9697-9703</ispartof><rights>Springer Science+Business Media New York 2017</rights><rights>Journal of Materials Science: Materials in Electronics is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-b09bf1d20399cb55e1924bfbd6279ce2a0516cfa4250b2b101b178174a31bf7d3</citedby><cites>FETCH-LOGICAL-c316t-b09bf1d20399cb55e1924bfbd6279ce2a0516cfa4250b2b101b178174a31bf7d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-017-6720-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-017-6720-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Jeyakumar, R.</creatorcontrib><creatorcontrib>Maiti, T. K.</creatorcontrib><creatorcontrib>Khader, Mahmoud M.</creatorcontrib><creatorcontrib>Kandasamy, Nikesh</creatorcontrib><creatorcontrib>Verma, Amit</creatorcontrib><creatorcontrib>Nekovei, Reza</creatorcontrib><creatorcontrib>Kumar, J.</creatorcontrib><creatorcontrib>Balaji, Nagarajan</creatorcontrib><creatorcontrib>Yi, Junsin</creatorcontrib><title>High-efficiency c-Si based interdigitated point contact back heterojunction solar cells</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>We report on the modeling and performance optimization studies of point contact back heterojunction (BHJ) solar cells. BHJ solar cell technology is a combination of front heterojunction (a-Si:H/c-Si) solar cell technology and interdigitated back junction c-Si solar cell technology. In this work, both emitter (p
+
-a-Si:H) and back surface field (BSF, n
+
-a-Si:H) were formed at the rear side as an array of interdigitated points, where their respective contacts formed an interdigitated pattern. The gap between p-type and n-type contact fingers was fixed at 10 µm. The n
+
-a-Si:H (i.e. BSF) circular diameter was fixed while emitter size was varied, and vice versa. Simulation was also performed with and without passivation layer underneath emitter and BSF. We also investigated the impact of surface texture size on cell efficiency. By varying surface texture size,
viz
. pyramid height and base width, an efficiency as high as 26.61% was obtained with 761 mV V
oc
, 41 mA/cm
2
J
sc
, and 84.5% FF for a small pyramid structure with 2 µm height and 4 µm base width.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Computer simulation</subject><subject>Efficiency</subject><subject>Materials Science</subject><subject>Optical and Electronic Materials</subject><subject>Photovoltaic cells</subject><subject>Point contact</subject><subject>Silicon wafers</subject><subject>Solar cells</subject><subject>Surface layers</subject><subject>Texture</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kLFOwzAQhi0EEqXwAGyRmA13ThzHI6qAIlViAASbZTt26xKSYqcDb4-rMLAwne70_f9JHyGXCNcIIG4SQsMrCihoLRhQPCIz5KKkVcPej8kMJBe04oydkrOUtgBQV2UzI2_LsN5Q532wwfX2u7D0ORRGJ9cWoR9dbMM6jHrM627Ih8IO_ajtmBH7UWxcJobtvrdjGPoiDZ2OhXVdl87Jidddche_c05e7-9eFku6enp4XNyuqC2xHqkBaTy2DEopreHcoWSV8aatmZDWMQ0ca-t1xTgYZhDQoGhQVLpE40VbzsnV1LuLw9fepVFth33s80uFEsoGhJQsUzhRNg4pRefVLoZPHb8Vgjr4U5M_lf2pgz-FOcOmTMpsv3bxT_O_oR_uO3Mw</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Jeyakumar, R.</creator><creator>Maiti, T. K.</creator><creator>Khader, Mahmoud M.</creator><creator>Kandasamy, Nikesh</creator><creator>Verma, Amit</creator><creator>Nekovei, Reza</creator><creator>Kumar, J.</creator><creator>Balaji, Nagarajan</creator><creator>Yi, Junsin</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope></search><sort><creationdate>20170701</creationdate><title>High-efficiency c-Si based interdigitated point contact back heterojunction solar cells</title><author>Jeyakumar, R. ; Maiti, T. K. ; Khader, Mahmoud M. ; Kandasamy, Nikesh ; Verma, Amit ; Nekovei, Reza ; Kumar, J. ; Balaji, Nagarajan ; Yi, Junsin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-b09bf1d20399cb55e1924bfbd6279ce2a0516cfa4250b2b101b178174a31bf7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Computer simulation</topic><topic>Efficiency</topic><topic>Materials Science</topic><topic>Optical and Electronic Materials</topic><topic>Photovoltaic cells</topic><topic>Point contact</topic><topic>Silicon wafers</topic><topic>Solar cells</topic><topic>Surface layers</topic><topic>Texture</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jeyakumar, R.</creatorcontrib><creatorcontrib>Maiti, T. K.</creatorcontrib><creatorcontrib>Khader, Mahmoud M.</creatorcontrib><creatorcontrib>Kandasamy, Nikesh</creatorcontrib><creatorcontrib>Verma, Amit</creatorcontrib><creatorcontrib>Nekovei, Reza</creatorcontrib><creatorcontrib>Kumar, J.</creatorcontrib><creatorcontrib>Balaji, Nagarajan</creatorcontrib><creatorcontrib>Yi, Junsin</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jeyakumar, R.</au><au>Maiti, T. K.</au><au>Khader, Mahmoud M.</au><au>Kandasamy, Nikesh</au><au>Verma, Amit</au><au>Nekovei, Reza</au><au>Kumar, J.</au><au>Balaji, Nagarajan</au><au>Yi, Junsin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-efficiency c-Si based interdigitated point contact back heterojunction solar cells</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2017-07-01</date><risdate>2017</risdate><volume>28</volume><issue>13</issue><spage>9697</spage><epage>9703</epage><pages>9697-9703</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>We report on the modeling and performance optimization studies of point contact back heterojunction (BHJ) solar cells. BHJ solar cell technology is a combination of front heterojunction (a-Si:H/c-Si) solar cell technology and interdigitated back junction c-Si solar cell technology. In this work, both emitter (p
+
-a-Si:H) and back surface field (BSF, n
+
-a-Si:H) were formed at the rear side as an array of interdigitated points, where their respective contacts formed an interdigitated pattern. The gap between p-type and n-type contact fingers was fixed at 10 µm. The n
+
-a-Si:H (i.e. BSF) circular diameter was fixed while emitter size was varied, and vice versa. Simulation was also performed with and without passivation layer underneath emitter and BSF. We also investigated the impact of surface texture size on cell efficiency. By varying surface texture size,
viz
. pyramid height and base width, an efficiency as high as 26.61% was obtained with 761 mV V
oc
, 41 mA/cm
2
J
sc
, and 84.5% FF for a small pyramid structure with 2 µm height and 4 µm base width.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-017-6720-1</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4522 |
ispartof | Journal of materials science. Materials in electronics, 2017-07, Vol.28 (13), p.9697-9703 |
issn | 0957-4522 1573-482X |
language | eng |
recordid | cdi_proquest_journals_1903807992 |
source | SpringerLink Journals - AutoHoldings |
subjects | Characterization and Evaluation of Materials Chemistry and Materials Science Computer simulation Efficiency Materials Science Optical and Electronic Materials Photovoltaic cells Point contact Silicon wafers Solar cells Surface layers Texture |
title | High-efficiency c-Si based interdigitated point contact back heterojunction solar cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T09%3A17%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-efficiency%20c-Si%20based%20interdigitated%20point%20contact%20back%20heterojunction%20solar%20cells&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Jeyakumar,%20R.&rft.date=2017-07-01&rft.volume=28&rft.issue=13&rft.spage=9697&rft.epage=9703&rft.pages=9697-9703&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-017-6720-1&rft_dat=%3Cproquest_cross%3E1903807992%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1903807992&rft_id=info:pmid/&rfr_iscdi=true |