Equipment State Assessment System Based on Adaptive Neuro-Fuzzy Inference System (ANFIS)

The paper is dedicated to analyze the modern expert systems to assess the technical condition of power stations and substations high-voltage equipment. The main problems of modern expert systems and their possible solutions are determined. As the structure and their basic construction principles are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mechanics and materials 2015-09, Vol.792, p.243-247
Hauptverfasser: Bliznyuk, Dmitry, Aminev, Artem, Khalyasmaa, Alexandra
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 247
container_issue
container_start_page 243
container_title Applied mechanics and materials
container_volume 792
creator Bliznyuk, Dmitry
Aminev, Artem
Khalyasmaa, Alexandra
description The paper is dedicated to analyze the modern expert systems to assess the technical condition of power stations and substations high-voltage equipment. The main problems of modern expert systems and their possible solutions are determined. As the structure and their basic construction principles are considered. Also this paper proposes an algorithm for the expert system model using fuzzy inference on the basis of technical diagnostics and tests. As a case study of assessment of power transformers state based on dissolved gas analysis in the oil is presented.
doi_str_mv 10.4028/www.scientific.net/AMM.792.243
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1903390063</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1903390063</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1403-4c94f684256803ef6500f052c16ca8d6a006fa9729a425a17fd93766638186113</originalsourceid><addsrcrecordid>eNqNkF1LwzAUhoMfoJv-h4IgetEuX03TG7GOTQfbvJiCdyGkCXa4dktSx_brjVbRS68OnPPynHMeAC4RTCjEfLDdbhOnKl37ylQqqbUfFLNZkuU4wZQcgFPEGI4zyvEh6BFIOElTyvnR1wDGOSHsBPScW0LIKKL8FLyMNm21XgVitPDS66hwTjvXNXbO61V0J50uo6aOilKuffWuo7lubROP2_1-F01qo62ulf6JXxXz8WRxfQaOjXxz-vy79sHzePQ0fIinj_eTYTGNFaKQxFTl1DBOcco4JNqwFEIDU6wQU5KXTIZLjcwznMuQkSgzZU4yxhjhiDOESB9cdNy1bTatdl4sm9bWYaVAOSQkDwASUjddStnGOauNWNtqJe1OICg-1YqgVvyqFUGtCGpFUCuC2gC47QDeyjr8qV7_7Pkf4gPhhIZ4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1903390063</pqid></control><display><type>article</type><title>Equipment State Assessment System Based on Adaptive Neuro-Fuzzy Inference System (ANFIS)</title><source>Scientific.net Journals</source><creator>Bliznyuk, Dmitry ; Aminev, Artem ; Khalyasmaa, Alexandra</creator><creatorcontrib>Bliznyuk, Dmitry ; Aminev, Artem ; Khalyasmaa, Alexandra</creatorcontrib><description>The paper is dedicated to analyze the modern expert systems to assess the technical condition of power stations and substations high-voltage equipment. The main problems of modern expert systems and their possible solutions are determined. As the structure and their basic construction principles are considered. Also this paper proposes an algorithm for the expert system model using fuzzy inference on the basis of technical diagnostics and tests. As a case study of assessment of power transformers state based on dissolved gas analysis in the oil is presented.</description><identifier>ISSN: 1660-9336</identifier><identifier>ISSN: 1662-7482</identifier><identifier>ISBN: 3038355488</identifier><identifier>ISBN: 9783038355489</identifier><identifier>EISSN: 1662-7482</identifier><identifier>DOI: 10.4028/www.scientific.net/AMM.792.243</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><subject>Adaptive systems ; Artificial neural networks ; Case studies ; Expert systems ; Fuzzy logic ; Fuzzy systems ; Gas analysis ; Inference ; Natural gas ; Power plants ; Substations</subject><ispartof>Applied mechanics and materials, 2015-09, Vol.792, p.243-247</ispartof><rights>2015 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Sep 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1403-4c94f684256803ef6500f052c16ca8d6a006fa9729a425a17fd93766638186113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/4118?width=600</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Bliznyuk, Dmitry</creatorcontrib><creatorcontrib>Aminev, Artem</creatorcontrib><creatorcontrib>Khalyasmaa, Alexandra</creatorcontrib><title>Equipment State Assessment System Based on Adaptive Neuro-Fuzzy Inference System (ANFIS)</title><title>Applied mechanics and materials</title><description>The paper is dedicated to analyze the modern expert systems to assess the technical condition of power stations and substations high-voltage equipment. The main problems of modern expert systems and their possible solutions are determined. As the structure and their basic construction principles are considered. Also this paper proposes an algorithm for the expert system model using fuzzy inference on the basis of technical diagnostics and tests. As a case study of assessment of power transformers state based on dissolved gas analysis in the oil is presented.</description><subject>Adaptive systems</subject><subject>Artificial neural networks</subject><subject>Case studies</subject><subject>Expert systems</subject><subject>Fuzzy logic</subject><subject>Fuzzy systems</subject><subject>Gas analysis</subject><subject>Inference</subject><subject>Natural gas</subject><subject>Power plants</subject><subject>Substations</subject><issn>1660-9336</issn><issn>1662-7482</issn><issn>1662-7482</issn><isbn>3038355488</isbn><isbn>9783038355489</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNkF1LwzAUhoMfoJv-h4IgetEuX03TG7GOTQfbvJiCdyGkCXa4dktSx_brjVbRS68OnPPynHMeAC4RTCjEfLDdbhOnKl37ylQqqbUfFLNZkuU4wZQcgFPEGI4zyvEh6BFIOElTyvnR1wDGOSHsBPScW0LIKKL8FLyMNm21XgVitPDS66hwTjvXNXbO61V0J50uo6aOilKuffWuo7lubROP2_1-F01qo62ulf6JXxXz8WRxfQaOjXxz-vy79sHzePQ0fIinj_eTYTGNFaKQxFTl1DBOcco4JNqwFEIDU6wQU5KXTIZLjcwznMuQkSgzZU4yxhjhiDOESB9cdNy1bTatdl4sm9bWYaVAOSQkDwASUjddStnGOauNWNtqJe1OICg-1YqgVvyqFUGtCGpFUCuC2gC47QDeyjr8qV7_7Pkf4gPhhIZ4</recordid><startdate>20150901</startdate><enddate>20150901</enddate><creator>Bliznyuk, Dmitry</creator><creator>Aminev, Artem</creator><creator>Khalyasmaa, Alexandra</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20150901</creationdate><title>Equipment State Assessment System Based on Adaptive Neuro-Fuzzy Inference System (ANFIS)</title><author>Bliznyuk, Dmitry ; Aminev, Artem ; Khalyasmaa, Alexandra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1403-4c94f684256803ef6500f052c16ca8d6a006fa9729a425a17fd93766638186113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adaptive systems</topic><topic>Artificial neural networks</topic><topic>Case studies</topic><topic>Expert systems</topic><topic>Fuzzy logic</topic><topic>Fuzzy systems</topic><topic>Gas analysis</topic><topic>Inference</topic><topic>Natural gas</topic><topic>Power plants</topic><topic>Substations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bliznyuk, Dmitry</creatorcontrib><creatorcontrib>Aminev, Artem</creatorcontrib><creatorcontrib>Khalyasmaa, Alexandra</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Applied mechanics and materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bliznyuk, Dmitry</au><au>Aminev, Artem</au><au>Khalyasmaa, Alexandra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Equipment State Assessment System Based on Adaptive Neuro-Fuzzy Inference System (ANFIS)</atitle><jtitle>Applied mechanics and materials</jtitle><date>2015-09-01</date><risdate>2015</risdate><volume>792</volume><spage>243</spage><epage>247</epage><pages>243-247</pages><issn>1660-9336</issn><issn>1662-7482</issn><eissn>1662-7482</eissn><isbn>3038355488</isbn><isbn>9783038355489</isbn><abstract>The paper is dedicated to analyze the modern expert systems to assess the technical condition of power stations and substations high-voltage equipment. The main problems of modern expert systems and their possible solutions are determined. As the structure and their basic construction principles are considered. Also this paper proposes an algorithm for the expert system model using fuzzy inference on the basis of technical diagnostics and tests. As a case study of assessment of power transformers state based on dissolved gas analysis in the oil is presented.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/AMM.792.243</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1660-9336
ispartof Applied mechanics and materials, 2015-09, Vol.792, p.243-247
issn 1660-9336
1662-7482
1662-7482
language eng
recordid cdi_proquest_journals_1903390063
source Scientific.net Journals
subjects Adaptive systems
Artificial neural networks
Case studies
Expert systems
Fuzzy logic
Fuzzy systems
Gas analysis
Inference
Natural gas
Power plants
Substations
title Equipment State Assessment System Based on Adaptive Neuro-Fuzzy Inference System (ANFIS)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T12%3A19%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Equipment%20State%20Assessment%20System%20Based%20on%20Adaptive%20Neuro-Fuzzy%20Inference%20System%20(ANFIS)&rft.jtitle=Applied%20mechanics%20and%20materials&rft.au=Bliznyuk,%20Dmitry&rft.date=2015-09-01&rft.volume=792&rft.spage=243&rft.epage=247&rft.pages=243-247&rft.issn=1660-9336&rft.eissn=1662-7482&rft.isbn=3038355488&rft.isbn_list=9783038355489&rft_id=info:doi/10.4028/www.scientific.net/AMM.792.243&rft_dat=%3Cproquest_cross%3E1903390063%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1903390063&rft_id=info:pmid/&rfr_iscdi=true