Equipment State Assessment System Based on Adaptive Neuro-Fuzzy Inference System (ANFIS)
The paper is dedicated to analyze the modern expert systems to assess the technical condition of power stations and substations high-voltage equipment. The main problems of modern expert systems and their possible solutions are determined. As the structure and their basic construction principles are...
Gespeichert in:
Veröffentlicht in: | Applied mechanics and materials 2015-09, Vol.792, p.243-247 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 247 |
---|---|
container_issue | |
container_start_page | 243 |
container_title | Applied mechanics and materials |
container_volume | 792 |
creator | Bliznyuk, Dmitry Aminev, Artem Khalyasmaa, Alexandra |
description | The paper is dedicated to analyze the modern expert systems to assess the technical condition of power stations and substations high-voltage equipment. The main problems of modern expert systems and their possible solutions are determined. As the structure and their basic construction principles are considered. Also this paper proposes an algorithm for the expert system model using fuzzy inference on the basis of technical diagnostics and tests. As a case study of assessment of power transformers state based on dissolved gas analysis in the oil is presented. |
doi_str_mv | 10.4028/www.scientific.net/AMM.792.243 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1903390063</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1903390063</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1403-4c94f684256803ef6500f052c16ca8d6a006fa9729a425a17fd93766638186113</originalsourceid><addsrcrecordid>eNqNkF1LwzAUhoMfoJv-h4IgetEuX03TG7GOTQfbvJiCdyGkCXa4dktSx_brjVbRS68OnPPynHMeAC4RTCjEfLDdbhOnKl37ylQqqbUfFLNZkuU4wZQcgFPEGI4zyvEh6BFIOElTyvnR1wDGOSHsBPScW0LIKKL8FLyMNm21XgVitPDS66hwTjvXNXbO61V0J50uo6aOilKuffWuo7lubROP2_1-F01qo62ulf6JXxXz8WRxfQaOjXxz-vy79sHzePQ0fIinj_eTYTGNFaKQxFTl1DBOcco4JNqwFEIDU6wQU5KXTIZLjcwznMuQkSgzZU4yxhjhiDOESB9cdNy1bTatdl4sm9bWYaVAOSQkDwASUjddStnGOauNWNtqJe1OICg-1YqgVvyqFUGtCGpFUCuC2gC47QDeyjr8qV7_7Pkf4gPhhIZ4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1903390063</pqid></control><display><type>article</type><title>Equipment State Assessment System Based on Adaptive Neuro-Fuzzy Inference System (ANFIS)</title><source>Scientific.net Journals</source><creator>Bliznyuk, Dmitry ; Aminev, Artem ; Khalyasmaa, Alexandra</creator><creatorcontrib>Bliznyuk, Dmitry ; Aminev, Artem ; Khalyasmaa, Alexandra</creatorcontrib><description>The paper is dedicated to analyze the modern expert systems to assess the technical condition of power stations and substations high-voltage equipment. The main problems of modern expert systems and their possible solutions are determined. As the structure and their basic construction principles are considered. Also this paper proposes an algorithm for the expert system model using fuzzy inference on the basis of technical diagnostics and tests. As a case study of assessment of power transformers state based on dissolved gas analysis in the oil is presented.</description><identifier>ISSN: 1660-9336</identifier><identifier>ISSN: 1662-7482</identifier><identifier>ISBN: 3038355488</identifier><identifier>ISBN: 9783038355489</identifier><identifier>EISSN: 1662-7482</identifier><identifier>DOI: 10.4028/www.scientific.net/AMM.792.243</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><subject>Adaptive systems ; Artificial neural networks ; Case studies ; Expert systems ; Fuzzy logic ; Fuzzy systems ; Gas analysis ; Inference ; Natural gas ; Power plants ; Substations</subject><ispartof>Applied mechanics and materials, 2015-09, Vol.792, p.243-247</ispartof><rights>2015 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Sep 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1403-4c94f684256803ef6500f052c16ca8d6a006fa9729a425a17fd93766638186113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/4118?width=600</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Bliznyuk, Dmitry</creatorcontrib><creatorcontrib>Aminev, Artem</creatorcontrib><creatorcontrib>Khalyasmaa, Alexandra</creatorcontrib><title>Equipment State Assessment System Based on Adaptive Neuro-Fuzzy Inference System (ANFIS)</title><title>Applied mechanics and materials</title><description>The paper is dedicated to analyze the modern expert systems to assess the technical condition of power stations and substations high-voltage equipment. The main problems of modern expert systems and their possible solutions are determined. As the structure and their basic construction principles are considered. Also this paper proposes an algorithm for the expert system model using fuzzy inference on the basis of technical diagnostics and tests. As a case study of assessment of power transformers state based on dissolved gas analysis in the oil is presented.</description><subject>Adaptive systems</subject><subject>Artificial neural networks</subject><subject>Case studies</subject><subject>Expert systems</subject><subject>Fuzzy logic</subject><subject>Fuzzy systems</subject><subject>Gas analysis</subject><subject>Inference</subject><subject>Natural gas</subject><subject>Power plants</subject><subject>Substations</subject><issn>1660-9336</issn><issn>1662-7482</issn><issn>1662-7482</issn><isbn>3038355488</isbn><isbn>9783038355489</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNkF1LwzAUhoMfoJv-h4IgetEuX03TG7GOTQfbvJiCdyGkCXa4dktSx_brjVbRS68OnPPynHMeAC4RTCjEfLDdbhOnKl37ylQqqbUfFLNZkuU4wZQcgFPEGI4zyvEh6BFIOElTyvnR1wDGOSHsBPScW0LIKKL8FLyMNm21XgVitPDS66hwTjvXNXbO61V0J50uo6aOilKuffWuo7lubROP2_1-F01qo62ulf6JXxXz8WRxfQaOjXxz-vy79sHzePQ0fIinj_eTYTGNFaKQxFTl1DBOcco4JNqwFEIDU6wQU5KXTIZLjcwznMuQkSgzZU4yxhjhiDOESB9cdNy1bTatdl4sm9bWYaVAOSQkDwASUjddStnGOauNWNtqJe1OICg-1YqgVvyqFUGtCGpFUCuC2gC47QDeyjr8qV7_7Pkf4gPhhIZ4</recordid><startdate>20150901</startdate><enddate>20150901</enddate><creator>Bliznyuk, Dmitry</creator><creator>Aminev, Artem</creator><creator>Khalyasmaa, Alexandra</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20150901</creationdate><title>Equipment State Assessment System Based on Adaptive Neuro-Fuzzy Inference System (ANFIS)</title><author>Bliznyuk, Dmitry ; Aminev, Artem ; Khalyasmaa, Alexandra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1403-4c94f684256803ef6500f052c16ca8d6a006fa9729a425a17fd93766638186113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adaptive systems</topic><topic>Artificial neural networks</topic><topic>Case studies</topic><topic>Expert systems</topic><topic>Fuzzy logic</topic><topic>Fuzzy systems</topic><topic>Gas analysis</topic><topic>Inference</topic><topic>Natural gas</topic><topic>Power plants</topic><topic>Substations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bliznyuk, Dmitry</creatorcontrib><creatorcontrib>Aminev, Artem</creatorcontrib><creatorcontrib>Khalyasmaa, Alexandra</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Applied mechanics and materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bliznyuk, Dmitry</au><au>Aminev, Artem</au><au>Khalyasmaa, Alexandra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Equipment State Assessment System Based on Adaptive Neuro-Fuzzy Inference System (ANFIS)</atitle><jtitle>Applied mechanics and materials</jtitle><date>2015-09-01</date><risdate>2015</risdate><volume>792</volume><spage>243</spage><epage>247</epage><pages>243-247</pages><issn>1660-9336</issn><issn>1662-7482</issn><eissn>1662-7482</eissn><isbn>3038355488</isbn><isbn>9783038355489</isbn><abstract>The paper is dedicated to analyze the modern expert systems to assess the technical condition of power stations and substations high-voltage equipment. The main problems of modern expert systems and their possible solutions are determined. As the structure and their basic construction principles are considered. Also this paper proposes an algorithm for the expert system model using fuzzy inference on the basis of technical diagnostics and tests. As a case study of assessment of power transformers state based on dissolved gas analysis in the oil is presented.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/AMM.792.243</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1660-9336 |
ispartof | Applied mechanics and materials, 2015-09, Vol.792, p.243-247 |
issn | 1660-9336 1662-7482 1662-7482 |
language | eng |
recordid | cdi_proquest_journals_1903390063 |
source | Scientific.net Journals |
subjects | Adaptive systems Artificial neural networks Case studies Expert systems Fuzzy logic Fuzzy systems Gas analysis Inference Natural gas Power plants Substations |
title | Equipment State Assessment System Based on Adaptive Neuro-Fuzzy Inference System (ANFIS) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T12%3A19%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Equipment%20State%20Assessment%20System%20Based%20on%20Adaptive%20Neuro-Fuzzy%20Inference%20System%20(ANFIS)&rft.jtitle=Applied%20mechanics%20and%20materials&rft.au=Bliznyuk,%20Dmitry&rft.date=2015-09-01&rft.volume=792&rft.spage=243&rft.epage=247&rft.pages=243-247&rft.issn=1660-9336&rft.eissn=1662-7482&rft.isbn=3038355488&rft.isbn_list=9783038355489&rft_id=info:doi/10.4028/www.scientific.net/AMM.792.243&rft_dat=%3Cproquest_cross%3E1903390063%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1903390063&rft_id=info:pmid/&rfr_iscdi=true |