An effective meshfree reproducing kernel method for buckling analysis of cylindrical shells with and without cutouts

The paper is concerned with eigen buckling analysis of curvilinear shells with and without cutouts by an effective meshfree method. In particular, shallow shell, cylinder and perforated cylinder buckling problems are considered. A Galerkin meshfree reproducing kernel (RK) approach is then developed....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational mechanics 2017-06, Vol.59 (6), p.919-932
Hauptverfasser: Sadamoto, S., Ozdemir, M., Tanaka, S., Taniguchi, K., Yu, T. T., Bui, T. Q.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 932
container_issue 6
container_start_page 919
container_title Computational mechanics
container_volume 59
creator Sadamoto, S.
Ozdemir, M.
Tanaka, S.
Taniguchi, K.
Yu, T. T.
Bui, T. Q.
description The paper is concerned with eigen buckling analysis of curvilinear shells with and without cutouts by an effective meshfree method. In particular, shallow shell, cylinder and perforated cylinder buckling problems are considered. A Galerkin meshfree reproducing kernel (RK) approach is then developed. The present meshfree curvilinear shell model is based on Reissner-Mindlin plate formulation, which allows the transverse shear deformation of the curved shells. There are five degrees of freedom per node (i.e., three displacements and two rotations). In this setting, the meshfree interpolation functions are derived from the RK. A singular kernel is introduced to impose the essential boundary conditions because of the RK shape functions, which do not automatically possess the Kronecker delta property. The stiffness matrix is derived using the stabilized conforming nodal integration technique. A convected coordinate system is introduced into the formulation to deal with the curvilinear surface. More importantly, the RKs taken here are used not only for the interpolation of the curved geometry, but also for the approximation of field variables. Several numerical examples with shallow shells and full cylinder models are considered, and the critical buckling loads and their buckling mode shapes are calculated by the meshfree eigenvalue analysis and examined. To show the accuracy and performance of the developed meshfree method, the computed critical buckling loads and mode shapes are compared with reference solutions based on boundary domain element, finite element and analytical methods.
doi_str_mv 10.1007/s00466-017-1384-5
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_1902881900</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A493823505</galeid><sourcerecordid>A493823505</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-4a9c4050d8e8188ae5e6e1fe14895bc2398e0bc5f72a3cb167bd2539e1faa97d3</originalsourceid><addsrcrecordid>eNp1kU9v3CAQxVHVSN0m_QC9IfWUgxMwxobjKmrSSJEq5c8ZYTzsknhNyuC0--3Lxjk0hwqJQfN-bzToEfKVszPOWHeOjDVtWzHeVVyoppIfyIo3oq6YrpuPZFUEVXVtJz-Rz4iPjHGphFyRvJ4oeA8uhxegO8CtTwA0wXOKw-zCtKFPkCYYi5a3caA-JtrP7mk8SHay4x4D0uip25fWkIKzI8UtjCPS3yFvCzO8PuKcqZtzKXhCjrwdEb681WPycPn9_uJHdfPz6vpifVM5oXSuGqtdwyQbFCiulAUJLXAPvFFa9q4WWgHrnfRdbYXredv1Qy2FLoy1uhvEMfm2zC2f-TUDZvMY51R2RsM1q5UqNyvU2UJt7AgmTD7mZF05A-yCixP4UPrrRgtVC8lkMZy-MxQmw5-8sTOiub67fc_yhXUpIibw5jmFnU17w5k5JGeW5EwJyBySMwdPvXiwsNMG0j9r_9f0F60gnLQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1902881900</pqid></control><display><type>article</type><title>An effective meshfree reproducing kernel method for buckling analysis of cylindrical shells with and without cutouts</title><source>SpringerLink Journals</source><creator>Sadamoto, S. ; Ozdemir, M. ; Tanaka, S. ; Taniguchi, K. ; Yu, T. T. ; Bui, T. Q.</creator><creatorcontrib>Sadamoto, S. ; Ozdemir, M. ; Tanaka, S. ; Taniguchi, K. ; Yu, T. T. ; Bui, T. Q.</creatorcontrib><description>The paper is concerned with eigen buckling analysis of curvilinear shells with and without cutouts by an effective meshfree method. In particular, shallow shell, cylinder and perforated cylinder buckling problems are considered. A Galerkin meshfree reproducing kernel (RK) approach is then developed. The present meshfree curvilinear shell model is based on Reissner-Mindlin plate formulation, which allows the transverse shear deformation of the curved shells. There are five degrees of freedom per node (i.e., three displacements and two rotations). In this setting, the meshfree interpolation functions are derived from the RK. A singular kernel is introduced to impose the essential boundary conditions because of the RK shape functions, which do not automatically possess the Kronecker delta property. The stiffness matrix is derived using the stabilized conforming nodal integration technique. A convected coordinate system is introduced into the formulation to deal with the curvilinear surface. More importantly, the RKs taken here are used not only for the interpolation of the curved geometry, but also for the approximation of field variables. Several numerical examples with shallow shells and full cylinder models are considered, and the critical buckling loads and their buckling mode shapes are calculated by the meshfree eigenvalue analysis and examined. To show the accuracy and performance of the developed meshfree method, the computed critical buckling loads and mode shapes are compared with reference solutions based on boundary domain element, finite element and analytical methods.</description><identifier>ISSN: 0178-7675</identifier><identifier>EISSN: 1432-0924</identifier><identifier>DOI: 10.1007/s00466-017-1384-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Boundary conditions ; Boundary element method ; Buckling ; Classical and Continuum Physics ; Computational Science and Engineering ; Coordinates ; Cylinders ; Cylindrical shells ; Eigenvalues ; Engineering ; Finite element method ; Galerkin method ; Interpolation ; Kernels ; Meshless methods ; Mindlin plates ; Original Paper ; Shallow shells ; Shape functions ; Shear deformation ; Shells ; Stiffness matrix ; Theoretical and Applied Mechanics</subject><ispartof>Computational mechanics, 2017-06, Vol.59 (6), p.919-932</ispartof><rights>Springer-Verlag Berlin Heidelberg 2017</rights><rights>COPYRIGHT 2017 Springer</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-4a9c4050d8e8188ae5e6e1fe14895bc2398e0bc5f72a3cb167bd2539e1faa97d3</citedby><cites>FETCH-LOGICAL-c389t-4a9c4050d8e8188ae5e6e1fe14895bc2398e0bc5f72a3cb167bd2539e1faa97d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00466-017-1384-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00466-017-1384-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Sadamoto, S.</creatorcontrib><creatorcontrib>Ozdemir, M.</creatorcontrib><creatorcontrib>Tanaka, S.</creatorcontrib><creatorcontrib>Taniguchi, K.</creatorcontrib><creatorcontrib>Yu, T. T.</creatorcontrib><creatorcontrib>Bui, T. Q.</creatorcontrib><title>An effective meshfree reproducing kernel method for buckling analysis of cylindrical shells with and without cutouts</title><title>Computational mechanics</title><addtitle>Comput Mech</addtitle><description>The paper is concerned with eigen buckling analysis of curvilinear shells with and without cutouts by an effective meshfree method. In particular, shallow shell, cylinder and perforated cylinder buckling problems are considered. A Galerkin meshfree reproducing kernel (RK) approach is then developed. The present meshfree curvilinear shell model is based on Reissner-Mindlin plate formulation, which allows the transverse shear deformation of the curved shells. There are five degrees of freedom per node (i.e., three displacements and two rotations). In this setting, the meshfree interpolation functions are derived from the RK. A singular kernel is introduced to impose the essential boundary conditions because of the RK shape functions, which do not automatically possess the Kronecker delta property. The stiffness matrix is derived using the stabilized conforming nodal integration technique. A convected coordinate system is introduced into the formulation to deal with the curvilinear surface. More importantly, the RKs taken here are used not only for the interpolation of the curved geometry, but also for the approximation of field variables. Several numerical examples with shallow shells and full cylinder models are considered, and the critical buckling loads and their buckling mode shapes are calculated by the meshfree eigenvalue analysis and examined. To show the accuracy and performance of the developed meshfree method, the computed critical buckling loads and mode shapes are compared with reference solutions based on boundary domain element, finite element and analytical methods.</description><subject>Boundary conditions</subject><subject>Boundary element method</subject><subject>Buckling</subject><subject>Classical and Continuum Physics</subject><subject>Computational Science and Engineering</subject><subject>Coordinates</subject><subject>Cylinders</subject><subject>Cylindrical shells</subject><subject>Eigenvalues</subject><subject>Engineering</subject><subject>Finite element method</subject><subject>Galerkin method</subject><subject>Interpolation</subject><subject>Kernels</subject><subject>Meshless methods</subject><subject>Mindlin plates</subject><subject>Original Paper</subject><subject>Shallow shells</subject><subject>Shape functions</subject><subject>Shear deformation</subject><subject>Shells</subject><subject>Stiffness matrix</subject><subject>Theoretical and Applied Mechanics</subject><issn>0178-7675</issn><issn>1432-0924</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kU9v3CAQxVHVSN0m_QC9IfWUgxMwxobjKmrSSJEq5c8ZYTzsknhNyuC0--3Lxjk0hwqJQfN-bzToEfKVszPOWHeOjDVtWzHeVVyoppIfyIo3oq6YrpuPZFUEVXVtJz-Rz4iPjHGphFyRvJ4oeA8uhxegO8CtTwA0wXOKw-zCtKFPkCYYi5a3caA-JtrP7mk8SHay4x4D0uip25fWkIKzI8UtjCPS3yFvCzO8PuKcqZtzKXhCjrwdEb681WPycPn9_uJHdfPz6vpifVM5oXSuGqtdwyQbFCiulAUJLXAPvFFa9q4WWgHrnfRdbYXredv1Qy2FLoy1uhvEMfm2zC2f-TUDZvMY51R2RsM1q5UqNyvU2UJt7AgmTD7mZF05A-yCixP4UPrrRgtVC8lkMZy-MxQmw5-8sTOiub67fc_yhXUpIibw5jmFnU17w5k5JGeW5EwJyBySMwdPvXiwsNMG0j9r_9f0F60gnLQ</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Sadamoto, S.</creator><creator>Ozdemir, M.</creator><creator>Tanaka, S.</creator><creator>Taniguchi, K.</creator><creator>Yu, T. T.</creator><creator>Bui, T. Q.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20170601</creationdate><title>An effective meshfree reproducing kernel method for buckling analysis of cylindrical shells with and without cutouts</title><author>Sadamoto, S. ; Ozdemir, M. ; Tanaka, S. ; Taniguchi, K. ; Yu, T. T. ; Bui, T. Q.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-4a9c4050d8e8188ae5e6e1fe14895bc2398e0bc5f72a3cb167bd2539e1faa97d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Boundary conditions</topic><topic>Boundary element method</topic><topic>Buckling</topic><topic>Classical and Continuum Physics</topic><topic>Computational Science and Engineering</topic><topic>Coordinates</topic><topic>Cylinders</topic><topic>Cylindrical shells</topic><topic>Eigenvalues</topic><topic>Engineering</topic><topic>Finite element method</topic><topic>Galerkin method</topic><topic>Interpolation</topic><topic>Kernels</topic><topic>Meshless methods</topic><topic>Mindlin plates</topic><topic>Original Paper</topic><topic>Shallow shells</topic><topic>Shape functions</topic><topic>Shear deformation</topic><topic>Shells</topic><topic>Stiffness matrix</topic><topic>Theoretical and Applied Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sadamoto, S.</creatorcontrib><creatorcontrib>Ozdemir, M.</creatorcontrib><creatorcontrib>Tanaka, S.</creatorcontrib><creatorcontrib>Taniguchi, K.</creatorcontrib><creatorcontrib>Yu, T. T.</creatorcontrib><creatorcontrib>Bui, T. Q.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Computational mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sadamoto, S.</au><au>Ozdemir, M.</au><au>Tanaka, S.</au><au>Taniguchi, K.</au><au>Yu, T. T.</au><au>Bui, T. Q.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An effective meshfree reproducing kernel method for buckling analysis of cylindrical shells with and without cutouts</atitle><jtitle>Computational mechanics</jtitle><stitle>Comput Mech</stitle><date>2017-06-01</date><risdate>2017</risdate><volume>59</volume><issue>6</issue><spage>919</spage><epage>932</epage><pages>919-932</pages><issn>0178-7675</issn><eissn>1432-0924</eissn><abstract>The paper is concerned with eigen buckling analysis of curvilinear shells with and without cutouts by an effective meshfree method. In particular, shallow shell, cylinder and perforated cylinder buckling problems are considered. A Galerkin meshfree reproducing kernel (RK) approach is then developed. The present meshfree curvilinear shell model is based on Reissner-Mindlin plate formulation, which allows the transverse shear deformation of the curved shells. There are five degrees of freedom per node (i.e., three displacements and two rotations). In this setting, the meshfree interpolation functions are derived from the RK. A singular kernel is introduced to impose the essential boundary conditions because of the RK shape functions, which do not automatically possess the Kronecker delta property. The stiffness matrix is derived using the stabilized conforming nodal integration technique. A convected coordinate system is introduced into the formulation to deal with the curvilinear surface. More importantly, the RKs taken here are used not only for the interpolation of the curved geometry, but also for the approximation of field variables. Several numerical examples with shallow shells and full cylinder models are considered, and the critical buckling loads and their buckling mode shapes are calculated by the meshfree eigenvalue analysis and examined. To show the accuracy and performance of the developed meshfree method, the computed critical buckling loads and mode shapes are compared with reference solutions based on boundary domain element, finite element and analytical methods.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00466-017-1384-5</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0178-7675
ispartof Computational mechanics, 2017-06, Vol.59 (6), p.919-932
issn 0178-7675
1432-0924
language eng
recordid cdi_proquest_journals_1902881900
source SpringerLink Journals
subjects Boundary conditions
Boundary element method
Buckling
Classical and Continuum Physics
Computational Science and Engineering
Coordinates
Cylinders
Cylindrical shells
Eigenvalues
Engineering
Finite element method
Galerkin method
Interpolation
Kernels
Meshless methods
Mindlin plates
Original Paper
Shallow shells
Shape functions
Shear deformation
Shells
Stiffness matrix
Theoretical and Applied Mechanics
title An effective meshfree reproducing kernel method for buckling analysis of cylindrical shells with and without cutouts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T11%3A20%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20effective%20meshfree%20reproducing%20kernel%20method%20for%20buckling%20analysis%20of%20cylindrical%20shells%20with%20and%20without%20cutouts&rft.jtitle=Computational%20mechanics&rft.au=Sadamoto,%20S.&rft.date=2017-06-01&rft.volume=59&rft.issue=6&rft.spage=919&rft.epage=932&rft.pages=919-932&rft.issn=0178-7675&rft.eissn=1432-0924&rft_id=info:doi/10.1007/s00466-017-1384-5&rft_dat=%3Cgale_proqu%3EA493823505%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1902881900&rft_id=info:pmid/&rft_galeid=A493823505&rfr_iscdi=true