An effective meshfree reproducing kernel method for buckling analysis of cylindrical shells with and without cutouts
The paper is concerned with eigen buckling analysis of curvilinear shells with and without cutouts by an effective meshfree method. In particular, shallow shell, cylinder and perforated cylinder buckling problems are considered. A Galerkin meshfree reproducing kernel (RK) approach is then developed....
Gespeichert in:
Veröffentlicht in: | Computational mechanics 2017-06, Vol.59 (6), p.919-932 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 932 |
---|---|
container_issue | 6 |
container_start_page | 919 |
container_title | Computational mechanics |
container_volume | 59 |
creator | Sadamoto, S. Ozdemir, M. Tanaka, S. Taniguchi, K. Yu, T. T. Bui, T. Q. |
description | The paper is concerned with eigen buckling analysis of curvilinear shells with and without cutouts by an effective meshfree method. In particular, shallow shell, cylinder and perforated cylinder buckling problems are considered. A Galerkin meshfree reproducing kernel (RK) approach is then developed. The present meshfree curvilinear shell model is based on Reissner-Mindlin plate formulation, which allows the transverse shear deformation of the curved shells. There are five degrees of freedom per node (i.e., three displacements and two rotations). In this setting, the meshfree interpolation functions are derived from the RK. A singular kernel is introduced to impose the essential boundary conditions because of the RK shape functions, which do not automatically possess the Kronecker delta property. The stiffness matrix is derived using the stabilized conforming nodal integration technique. A convected coordinate system is introduced into the formulation to deal with the curvilinear surface. More importantly, the RKs taken here are used not only for the interpolation of the curved geometry, but also for the approximation of field variables. Several numerical examples with shallow shells and full cylinder models are considered, and the critical buckling loads and their buckling mode shapes are calculated by the meshfree eigenvalue analysis and examined. To show the accuracy and performance of the developed meshfree method, the computed critical buckling loads and mode shapes are compared with reference solutions based on boundary domain element, finite element and analytical methods. |
doi_str_mv | 10.1007/s00466-017-1384-5 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_1902881900</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A493823505</galeid><sourcerecordid>A493823505</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-4a9c4050d8e8188ae5e6e1fe14895bc2398e0bc5f72a3cb167bd2539e1faa97d3</originalsourceid><addsrcrecordid>eNp1kU9v3CAQxVHVSN0m_QC9IfWUgxMwxobjKmrSSJEq5c8ZYTzsknhNyuC0--3Lxjk0hwqJQfN-bzToEfKVszPOWHeOjDVtWzHeVVyoppIfyIo3oq6YrpuPZFUEVXVtJz-Rz4iPjHGphFyRvJ4oeA8uhxegO8CtTwA0wXOKw-zCtKFPkCYYi5a3caA-JtrP7mk8SHay4x4D0uip25fWkIKzI8UtjCPS3yFvCzO8PuKcqZtzKXhCjrwdEb681WPycPn9_uJHdfPz6vpifVM5oXSuGqtdwyQbFCiulAUJLXAPvFFa9q4WWgHrnfRdbYXredv1Qy2FLoy1uhvEMfm2zC2f-TUDZvMY51R2RsM1q5UqNyvU2UJt7AgmTD7mZF05A-yCixP4UPrrRgtVC8lkMZy-MxQmw5-8sTOiub67fc_yhXUpIibw5jmFnU17w5k5JGeW5EwJyBySMwdPvXiwsNMG0j9r_9f0F60gnLQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1902881900</pqid></control><display><type>article</type><title>An effective meshfree reproducing kernel method for buckling analysis of cylindrical shells with and without cutouts</title><source>SpringerLink Journals</source><creator>Sadamoto, S. ; Ozdemir, M. ; Tanaka, S. ; Taniguchi, K. ; Yu, T. T. ; Bui, T. Q.</creator><creatorcontrib>Sadamoto, S. ; Ozdemir, M. ; Tanaka, S. ; Taniguchi, K. ; Yu, T. T. ; Bui, T. Q.</creatorcontrib><description>The paper is concerned with eigen buckling analysis of curvilinear shells with and without cutouts by an effective meshfree method. In particular, shallow shell, cylinder and perforated cylinder buckling problems are considered. A Galerkin meshfree reproducing kernel (RK) approach is then developed. The present meshfree curvilinear shell model is based on Reissner-Mindlin plate formulation, which allows the transverse shear deformation of the curved shells. There are five degrees of freedom per node (i.e., three displacements and two rotations). In this setting, the meshfree interpolation functions are derived from the RK. A singular kernel is introduced to impose the essential boundary conditions because of the RK shape functions, which do not automatically possess the Kronecker delta property. The stiffness matrix is derived using the stabilized conforming nodal integration technique. A convected coordinate system is introduced into the formulation to deal with the curvilinear surface. More importantly, the RKs taken here are used not only for the interpolation of the curved geometry, but also for the approximation of field variables. Several numerical examples with shallow shells and full cylinder models are considered, and the critical buckling loads and their buckling mode shapes are calculated by the meshfree eigenvalue analysis and examined. To show the accuracy and performance of the developed meshfree method, the computed critical buckling loads and mode shapes are compared with reference solutions based on boundary domain element, finite element and analytical methods.</description><identifier>ISSN: 0178-7675</identifier><identifier>EISSN: 1432-0924</identifier><identifier>DOI: 10.1007/s00466-017-1384-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Boundary conditions ; Boundary element method ; Buckling ; Classical and Continuum Physics ; Computational Science and Engineering ; Coordinates ; Cylinders ; Cylindrical shells ; Eigenvalues ; Engineering ; Finite element method ; Galerkin method ; Interpolation ; Kernels ; Meshless methods ; Mindlin plates ; Original Paper ; Shallow shells ; Shape functions ; Shear deformation ; Shells ; Stiffness matrix ; Theoretical and Applied Mechanics</subject><ispartof>Computational mechanics, 2017-06, Vol.59 (6), p.919-932</ispartof><rights>Springer-Verlag Berlin Heidelberg 2017</rights><rights>COPYRIGHT 2017 Springer</rights><rights>Copyright Springer Science & Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-4a9c4050d8e8188ae5e6e1fe14895bc2398e0bc5f72a3cb167bd2539e1faa97d3</citedby><cites>FETCH-LOGICAL-c389t-4a9c4050d8e8188ae5e6e1fe14895bc2398e0bc5f72a3cb167bd2539e1faa97d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00466-017-1384-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00466-017-1384-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Sadamoto, S.</creatorcontrib><creatorcontrib>Ozdemir, M.</creatorcontrib><creatorcontrib>Tanaka, S.</creatorcontrib><creatorcontrib>Taniguchi, K.</creatorcontrib><creatorcontrib>Yu, T. T.</creatorcontrib><creatorcontrib>Bui, T. Q.</creatorcontrib><title>An effective meshfree reproducing kernel method for buckling analysis of cylindrical shells with and without cutouts</title><title>Computational mechanics</title><addtitle>Comput Mech</addtitle><description>The paper is concerned with eigen buckling analysis of curvilinear shells with and without cutouts by an effective meshfree method. In particular, shallow shell, cylinder and perforated cylinder buckling problems are considered. A Galerkin meshfree reproducing kernel (RK) approach is then developed. The present meshfree curvilinear shell model is based on Reissner-Mindlin plate formulation, which allows the transverse shear deformation of the curved shells. There are five degrees of freedom per node (i.e., three displacements and two rotations). In this setting, the meshfree interpolation functions are derived from the RK. A singular kernel is introduced to impose the essential boundary conditions because of the RK shape functions, which do not automatically possess the Kronecker delta property. The stiffness matrix is derived using the stabilized conforming nodal integration technique. A convected coordinate system is introduced into the formulation to deal with the curvilinear surface. More importantly, the RKs taken here are used not only for the interpolation of the curved geometry, but also for the approximation of field variables. Several numerical examples with shallow shells and full cylinder models are considered, and the critical buckling loads and their buckling mode shapes are calculated by the meshfree eigenvalue analysis and examined. To show the accuracy and performance of the developed meshfree method, the computed critical buckling loads and mode shapes are compared with reference solutions based on boundary domain element, finite element and analytical methods.</description><subject>Boundary conditions</subject><subject>Boundary element method</subject><subject>Buckling</subject><subject>Classical and Continuum Physics</subject><subject>Computational Science and Engineering</subject><subject>Coordinates</subject><subject>Cylinders</subject><subject>Cylindrical shells</subject><subject>Eigenvalues</subject><subject>Engineering</subject><subject>Finite element method</subject><subject>Galerkin method</subject><subject>Interpolation</subject><subject>Kernels</subject><subject>Meshless methods</subject><subject>Mindlin plates</subject><subject>Original Paper</subject><subject>Shallow shells</subject><subject>Shape functions</subject><subject>Shear deformation</subject><subject>Shells</subject><subject>Stiffness matrix</subject><subject>Theoretical and Applied Mechanics</subject><issn>0178-7675</issn><issn>1432-0924</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kU9v3CAQxVHVSN0m_QC9IfWUgxMwxobjKmrSSJEq5c8ZYTzsknhNyuC0--3Lxjk0hwqJQfN-bzToEfKVszPOWHeOjDVtWzHeVVyoppIfyIo3oq6YrpuPZFUEVXVtJz-Rz4iPjHGphFyRvJ4oeA8uhxegO8CtTwA0wXOKw-zCtKFPkCYYi5a3caA-JtrP7mk8SHay4x4D0uip25fWkIKzI8UtjCPS3yFvCzO8PuKcqZtzKXhCjrwdEb681WPycPn9_uJHdfPz6vpifVM5oXSuGqtdwyQbFCiulAUJLXAPvFFa9q4WWgHrnfRdbYXredv1Qy2FLoy1uhvEMfm2zC2f-TUDZvMY51R2RsM1q5UqNyvU2UJt7AgmTD7mZF05A-yCixP4UPrrRgtVC8lkMZy-MxQmw5-8sTOiub67fc_yhXUpIibw5jmFnU17w5k5JGeW5EwJyBySMwdPvXiwsNMG0j9r_9f0F60gnLQ</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Sadamoto, S.</creator><creator>Ozdemir, M.</creator><creator>Tanaka, S.</creator><creator>Taniguchi, K.</creator><creator>Yu, T. T.</creator><creator>Bui, T. Q.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20170601</creationdate><title>An effective meshfree reproducing kernel method for buckling analysis of cylindrical shells with and without cutouts</title><author>Sadamoto, S. ; Ozdemir, M. ; Tanaka, S. ; Taniguchi, K. ; Yu, T. T. ; Bui, T. Q.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-4a9c4050d8e8188ae5e6e1fe14895bc2398e0bc5f72a3cb167bd2539e1faa97d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Boundary conditions</topic><topic>Boundary element method</topic><topic>Buckling</topic><topic>Classical and Continuum Physics</topic><topic>Computational Science and Engineering</topic><topic>Coordinates</topic><topic>Cylinders</topic><topic>Cylindrical shells</topic><topic>Eigenvalues</topic><topic>Engineering</topic><topic>Finite element method</topic><topic>Galerkin method</topic><topic>Interpolation</topic><topic>Kernels</topic><topic>Meshless methods</topic><topic>Mindlin plates</topic><topic>Original Paper</topic><topic>Shallow shells</topic><topic>Shape functions</topic><topic>Shear deformation</topic><topic>Shells</topic><topic>Stiffness matrix</topic><topic>Theoretical and Applied Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sadamoto, S.</creatorcontrib><creatorcontrib>Ozdemir, M.</creatorcontrib><creatorcontrib>Tanaka, S.</creatorcontrib><creatorcontrib>Taniguchi, K.</creatorcontrib><creatorcontrib>Yu, T. T.</creatorcontrib><creatorcontrib>Bui, T. Q.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Computational mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sadamoto, S.</au><au>Ozdemir, M.</au><au>Tanaka, S.</au><au>Taniguchi, K.</au><au>Yu, T. T.</au><au>Bui, T. Q.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An effective meshfree reproducing kernel method for buckling analysis of cylindrical shells with and without cutouts</atitle><jtitle>Computational mechanics</jtitle><stitle>Comput Mech</stitle><date>2017-06-01</date><risdate>2017</risdate><volume>59</volume><issue>6</issue><spage>919</spage><epage>932</epage><pages>919-932</pages><issn>0178-7675</issn><eissn>1432-0924</eissn><abstract>The paper is concerned with eigen buckling analysis of curvilinear shells with and without cutouts by an effective meshfree method. In particular, shallow shell, cylinder and perforated cylinder buckling problems are considered. A Galerkin meshfree reproducing kernel (RK) approach is then developed. The present meshfree curvilinear shell model is based on Reissner-Mindlin plate formulation, which allows the transverse shear deformation of the curved shells. There are five degrees of freedom per node (i.e., three displacements and two rotations). In this setting, the meshfree interpolation functions are derived from the RK. A singular kernel is introduced to impose the essential boundary conditions because of the RK shape functions, which do not automatically possess the Kronecker delta property. The stiffness matrix is derived using the stabilized conforming nodal integration technique. A convected coordinate system is introduced into the formulation to deal with the curvilinear surface. More importantly, the RKs taken here are used not only for the interpolation of the curved geometry, but also for the approximation of field variables. Several numerical examples with shallow shells and full cylinder models are considered, and the critical buckling loads and their buckling mode shapes are calculated by the meshfree eigenvalue analysis and examined. To show the accuracy and performance of the developed meshfree method, the computed critical buckling loads and mode shapes are compared with reference solutions based on boundary domain element, finite element and analytical methods.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00466-017-1384-5</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0178-7675 |
ispartof | Computational mechanics, 2017-06, Vol.59 (6), p.919-932 |
issn | 0178-7675 1432-0924 |
language | eng |
recordid | cdi_proquest_journals_1902881900 |
source | SpringerLink Journals |
subjects | Boundary conditions Boundary element method Buckling Classical and Continuum Physics Computational Science and Engineering Coordinates Cylinders Cylindrical shells Eigenvalues Engineering Finite element method Galerkin method Interpolation Kernels Meshless methods Mindlin plates Original Paper Shallow shells Shape functions Shear deformation Shells Stiffness matrix Theoretical and Applied Mechanics |
title | An effective meshfree reproducing kernel method for buckling analysis of cylindrical shells with and without cutouts |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T11%3A20%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20effective%20meshfree%20reproducing%20kernel%20method%20for%20buckling%20analysis%20of%20cylindrical%20shells%20with%20and%20without%20cutouts&rft.jtitle=Computational%20mechanics&rft.au=Sadamoto,%20S.&rft.date=2017-06-01&rft.volume=59&rft.issue=6&rft.spage=919&rft.epage=932&rft.pages=919-932&rft.issn=0178-7675&rft.eissn=1432-0924&rft_id=info:doi/10.1007/s00466-017-1384-5&rft_dat=%3Cgale_proqu%3EA493823505%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1902881900&rft_id=info:pmid/&rft_galeid=A493823505&rfr_iscdi=true |