Quasi-classical asymptotics for functions of Wiener–Hopf operators: smooth versus non-smooth symbols

We consider functions of Wiener–Hopf type operators on the Hilbert space L 2 ( R d ) . It has been known for a long time that the quasi-classical asymptotics for traces of resulting operators strongly depend on the smoothness of the symbol: for smooth symbols the expansion is power-like, whereas dis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geometric and functional analysis 2017-06, Vol.27 (3), p.676-725
1. Verfasser: Sobolev, Alexander V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider functions of Wiener–Hopf type operators on the Hilbert space L 2 ( R d ) . It has been known for a long time that the quasi-classical asymptotics for traces of resulting operators strongly depend on the smoothness of the symbol: for smooth symbols the expansion is power-like, whereas discontinuous symbols (e.g. indicator functions) produce an extra logarithmic factor. We investigate the transition regime by studying symbols depending on an extra parameter T ≥ 0 in such a way that the symbol tends to a discontinuous one as T → 0 . The main result is two-parameter asymptotics (in the quasi-classical parameter and in T ), describing a transition from the smooth case to the discontinuous one. The obtained asymptotic formulas are used to analyse the low-temperature scaling limit of the spatially bipartite entanglement entropy of thermal equilibrium states of non-interacting fermions.
ISSN:1016-443X
1420-8970
DOI:10.1007/s00039-017-0408-9