Quasi-classical asymptotics for functions of Wiener–Hopf operators: smooth versus non-smooth symbols
We consider functions of Wiener–Hopf type operators on the Hilbert space L 2 ( R d ) . It has been known for a long time that the quasi-classical asymptotics for traces of resulting operators strongly depend on the smoothness of the symbol: for smooth symbols the expansion is power-like, whereas dis...
Gespeichert in:
Veröffentlicht in: | Geometric and functional analysis 2017-06, Vol.27 (3), p.676-725 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider functions of Wiener–Hopf type operators on the Hilbert space
L
2
(
R
d
)
. It has been known for a long time that the quasi-classical asymptotics for traces of resulting operators strongly depend on the smoothness of the symbol: for smooth symbols the expansion is power-like, whereas discontinuous symbols (e.g. indicator functions) produce an extra logarithmic factor. We investigate the transition regime by studying symbols depending on an extra parameter
T
≥
0
in such a way that the symbol tends to a discontinuous one as
T
→
0
. The main result is two-parameter asymptotics (in the quasi-classical parameter and in
T
), describing a transition from the smooth case to the discontinuous one. The obtained asymptotic formulas are used to analyse the low-temperature scaling limit of the spatially bipartite entanglement entropy of thermal equilibrium states of non-interacting fermions. |
---|---|
ISSN: | 1016-443X 1420-8970 |
DOI: | 10.1007/s00039-017-0408-9 |