Spinor Spaces in Discrete Clifford Analysis

In this paper we work in the ‘split’ discrete Clifford analysis setting, i.e. the m -dimensional function theory concerning null-functions, defined on the grid Z m , of the discrete Dirac operator ∂ , involving both forward and backward differences, which factorizes the (discrete) Star-Laplacian. We...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Complex analysis and operator theory 2017-06, Vol.11 (5), p.1113-1137
Hauptverfasser: De Ridder, H., Raeymaekers, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1137
container_issue 5
container_start_page 1113
container_title Complex analysis and operator theory
container_volume 11
creator De Ridder, H.
Raeymaekers, T.
description In this paper we work in the ‘split’ discrete Clifford analysis setting, i.e. the m -dimensional function theory concerning null-functions, defined on the grid Z m , of the discrete Dirac operator ∂ , involving both forward and backward differences, which factorizes the (discrete) Star-Laplacian. We show how the space M k of discrete spherical monogenics homogeneous of degree k , is decomposable into irreducible so ( m ) -representations.
doi_str_mv 10.1007/s11785-017-0644-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1902695822</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1902695822</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-46d31037946211d2768fe2da2c96567f293c7ccf3cf89b6e507974b890a027133</originalsourceid><addsrcrecordid>eNp1kEFLxDAQhYMouK7-AG8FjxKdSdqkOS7VVWHBw-o5dNNEutS2Zrqw--_tUhEvnmYO73s8PsauEe4QQN8Tos4zDqg5qDTl-xM2Q6WQ50KJ098_S8_ZBdEWQIE2ZsZu133ddjFZ96XzlNRt8lCTi37wSdHUIXSxShZt2Ryopkt2FsqG_NXPnbP35eNb8cxXr08vxWLFnUQceKoqiSC1SZVArIRWefCiKoUzKlM6CCOddi5IF3KzUT4bl-h0kxsoQWiUcs5upt4-dl87T4Pddrs4jiCLBoQyWS7EmMIp5WJHFH2wfaw_y3iwCPboxE5O7OjEHp3Y_ciIiaEx2374-Kf5X-gbynBh-w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1902695822</pqid></control><display><type>article</type><title>Spinor Spaces in Discrete Clifford Analysis</title><source>SpringerNature Journals</source><creator>De Ridder, H. ; Raeymaekers, T.</creator><creatorcontrib>De Ridder, H. ; Raeymaekers, T.</creatorcontrib><description>In this paper we work in the ‘split’ discrete Clifford analysis setting, i.e. the m -dimensional function theory concerning null-functions, defined on the grid Z m , of the discrete Dirac operator ∂ , involving both forward and backward differences, which factorizes the (discrete) Star-Laplacian. We show how the space M k of discrete spherical monogenics homogeneous of degree k , is decomposable into irreducible so ( m ) -representations.</description><identifier>ISSN: 1661-8254</identifier><identifier>EISSN: 1661-8262</identifier><identifier>DOI: 10.1007/s11785-017-0644-x</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Mathematics ; Mathematics and Statistics ; Operator Theory ; Operators (mathematics) ; Representations</subject><ispartof>Complex analysis and operator theory, 2017-06, Vol.11 (5), p.1113-1137</ispartof><rights>Springer International Publishing 2017</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c311t-46d31037946211d2768fe2da2c96567f293c7ccf3cf89b6e507974b890a027133</cites><orcidid>0000-0002-1343-0320</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11785-017-0644-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11785-017-0644-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>De Ridder, H.</creatorcontrib><creatorcontrib>Raeymaekers, T.</creatorcontrib><title>Spinor Spaces in Discrete Clifford Analysis</title><title>Complex analysis and operator theory</title><addtitle>Complex Anal. Oper. Theory</addtitle><description>In this paper we work in the ‘split’ discrete Clifford analysis setting, i.e. the m -dimensional function theory concerning null-functions, defined on the grid Z m , of the discrete Dirac operator ∂ , involving both forward and backward differences, which factorizes the (discrete) Star-Laplacian. We show how the space M k of discrete spherical monogenics homogeneous of degree k , is decomposable into irreducible so ( m ) -representations.</description><subject>Analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operator Theory</subject><subject>Operators (mathematics)</subject><subject>Representations</subject><issn>1661-8254</issn><issn>1661-8262</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLxDAQhYMouK7-AG8FjxKdSdqkOS7VVWHBw-o5dNNEutS2Zrqw--_tUhEvnmYO73s8PsauEe4QQN8Tos4zDqg5qDTl-xM2Q6WQ50KJ098_S8_ZBdEWQIE2ZsZu133ddjFZ96XzlNRt8lCTi37wSdHUIXSxShZt2Ryopkt2FsqG_NXPnbP35eNb8cxXr08vxWLFnUQceKoqiSC1SZVArIRWefCiKoUzKlM6CCOddi5IF3KzUT4bl-h0kxsoQWiUcs5upt4-dl87T4Pddrs4jiCLBoQyWS7EmMIp5WJHFH2wfaw_y3iwCPboxE5O7OjEHp3Y_ciIiaEx2374-Kf5X-gbynBh-w</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>De Ridder, H.</creator><creator>Raeymaekers, T.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1343-0320</orcidid></search><sort><creationdate>20170601</creationdate><title>Spinor Spaces in Discrete Clifford Analysis</title><author>De Ridder, H. ; Raeymaekers, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-46d31037946211d2768fe2da2c96567f293c7ccf3cf89b6e507974b890a027133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operator Theory</topic><topic>Operators (mathematics)</topic><topic>Representations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De Ridder, H.</creatorcontrib><creatorcontrib>Raeymaekers, T.</creatorcontrib><collection>CrossRef</collection><jtitle>Complex analysis and operator theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De Ridder, H.</au><au>Raeymaekers, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spinor Spaces in Discrete Clifford Analysis</atitle><jtitle>Complex analysis and operator theory</jtitle><stitle>Complex Anal. Oper. Theory</stitle><date>2017-06-01</date><risdate>2017</risdate><volume>11</volume><issue>5</issue><spage>1113</spage><epage>1137</epage><pages>1113-1137</pages><issn>1661-8254</issn><eissn>1661-8262</eissn><abstract>In this paper we work in the ‘split’ discrete Clifford analysis setting, i.e. the m -dimensional function theory concerning null-functions, defined on the grid Z m , of the discrete Dirac operator ∂ , involving both forward and backward differences, which factorizes the (discrete) Star-Laplacian. We show how the space M k of discrete spherical monogenics homogeneous of degree k , is decomposable into irreducible so ( m ) -representations.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11785-017-0644-x</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0002-1343-0320</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1661-8254
ispartof Complex analysis and operator theory, 2017-06, Vol.11 (5), p.1113-1137
issn 1661-8254
1661-8262
language eng
recordid cdi_proquest_journals_1902695822
source SpringerNature Journals
subjects Analysis
Mathematics
Mathematics and Statistics
Operator Theory
Operators (mathematics)
Representations
title Spinor Spaces in Discrete Clifford Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T13%3A19%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spinor%20Spaces%20in%20Discrete%20Clifford%20Analysis&rft.jtitle=Complex%20analysis%20and%20operator%20theory&rft.au=De%20Ridder,%20H.&rft.date=2017-06-01&rft.volume=11&rft.issue=5&rft.spage=1113&rft.epage=1137&rft.pages=1113-1137&rft.issn=1661-8254&rft.eissn=1661-8262&rft_id=info:doi/10.1007/s11785-017-0644-x&rft_dat=%3Cproquest_cross%3E1902695822%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1902695822&rft_id=info:pmid/&rfr_iscdi=true