Lattice Instabilities and Phase Transformations in Fe from Atomistic Simulations
The stability of the body- and face-centered cubic lattices corresponding to the α and γ phases of Fe, respectively, as well as the transformation of one phase to the other were investigated by atomistic simulations. Two interatomic potentials were used: the embedded atom method (EAM) potential of M...
Gespeichert in:
Veröffentlicht in: | Journal of phase equilibria and diffusion 2017-06, Vol.38 (3), p.185-194 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 194 |
---|---|
container_issue | 3 |
container_start_page | 185 |
container_title | Journal of phase equilibria and diffusion |
container_volume | 38 |
creator | Cuppari, M. G. Di V. Veiga, R. G. A. Goldenstein, H. Silva, J. E. Guimarães Becquart, C. S. |
description | The stability of the body- and face-centered cubic lattices corresponding to the α and γ phases of Fe, respectively, as well as the transformation of one phase to the other were investigated by atomistic simulations. Two interatomic potentials were used: the embedded atom method (EAM) potential of Meyer and Entel and the bond order potential (BOP) developed by Müller et al. The suitability of the potentials for investigating structural transformations in Fe was verified using nonequilibrium free energy calculations and molecular dynamics simulations. The results showed that the EAM potential is capable of describing the bcc → fcc and fcc → bcc transformations whereas no transformation was observed for the computationally more expensive BOP potential with the simulation set up used. |
doi_str_mv | 10.1007/s11669-017-0524-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1902616194</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1902616194</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-b2fc875020ef5011cbc56ce557f412d9b4a3eb1687660165e87fefd1614ef3ce3</originalsourceid><addsrcrecordid>eNp1kLFOwzAQQC0EEqXwAWyWmA13SWwnY1VRWqkSlSiz5bg2uGqSYrsDf4-rMLAw3Q3v3UmPkHuERwSQTxFRiIYBSga8qBhckAnWomSyrPhl3nklmYRSXpObGPcARSNrMSGbtU7JG0tXfUy69QefvI1U9zu6-dTR0m3QfXRD6HTyQx-p7-nCUheGjs7S0PmYbfrmu9NhBG7JldOHaO9-55S8L5638yVbv76s5rM1MyWKxNrCmVpyKMA6DoimNVwYy7l0FRa7pq10aVsUtRQCUHBbS2fdDgVW1pXGllPyMN49huHrZGNS--EU-vxSYQOFyGRTZQpHyoQhxmCdOgbf6fCtENQ5nBrDqRxOncMpyE4xOjGz_YcNfy7_K_0AOWRwtQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1902616194</pqid></control><display><type>article</type><title>Lattice Instabilities and Phase Transformations in Fe from Atomistic Simulations</title><source>SpringerLink (Online service)</source><creator>Cuppari, M. G. Di V. ; Veiga, R. G. A. ; Goldenstein, H. ; Silva, J. E. Guimarães ; Becquart, C. S.</creator><creatorcontrib>Cuppari, M. G. Di V. ; Veiga, R. G. A. ; Goldenstein, H. ; Silva, J. E. Guimarães ; Becquart, C. S.</creatorcontrib><description>The stability of the body- and face-centered cubic lattices corresponding to the α and γ phases of Fe, respectively, as well as the transformation of one phase to the other were investigated by atomistic simulations. Two interatomic potentials were used: the embedded atom method (EAM) potential of Meyer and Entel and the bond order potential (BOP) developed by Müller et al. The suitability of the potentials for investigating structural transformations in Fe was verified using nonequilibrium free energy calculations and molecular dynamics simulations. The results showed that the EAM potential is capable of describing the bcc → fcc and fcc → bcc transformations whereas no transformation was observed for the computationally more expensive BOP potential with the simulation set up used.</description><identifier>ISSN: 1547-7037</identifier><identifier>EISSN: 1863-7345</identifier><identifier>EISSN: 1934-7243</identifier><identifier>DOI: 10.1007/s11669-017-0524-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Alloys ; Body centered cubic lattice ; Ceramics ; Composites ; Computer simulation ; Crystallography and Scattering Methods ; Embedded atom method ; Energy consumption ; Engineering Thermodynamics ; Face centered cubic lattice ; Free energy ; Glass ; Heat and Mass Transfer ; Lattices ; Metallic Materials ; Molecular dynamics ; Natural Materials ; Phase transitions ; Physics ; Physics and Astronomy ; Simulation ; Thermodynamics</subject><ispartof>Journal of phase equilibria and diffusion, 2017-06, Vol.38 (3), p.185-194</ispartof><rights>ASM International 2017</rights><rights>Journal of Phase Equilibria and Diffusion is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-b2fc875020ef5011cbc56ce557f412d9b4a3eb1687660165e87fefd1614ef3ce3</citedby><cites>FETCH-LOGICAL-c316t-b2fc875020ef5011cbc56ce557f412d9b4a3eb1687660165e87fefd1614ef3ce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11669-017-0524-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11669-017-0524-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Cuppari, M. G. Di V.</creatorcontrib><creatorcontrib>Veiga, R. G. A.</creatorcontrib><creatorcontrib>Goldenstein, H.</creatorcontrib><creatorcontrib>Silva, J. E. Guimarães</creatorcontrib><creatorcontrib>Becquart, C. S.</creatorcontrib><title>Lattice Instabilities and Phase Transformations in Fe from Atomistic Simulations</title><title>Journal of phase equilibria and diffusion</title><addtitle>J. Phase Equilib. Diffus</addtitle><description>The stability of the body- and face-centered cubic lattices corresponding to the α and γ phases of Fe, respectively, as well as the transformation of one phase to the other were investigated by atomistic simulations. Two interatomic potentials were used: the embedded atom method (EAM) potential of Meyer and Entel and the bond order potential (BOP) developed by Müller et al. The suitability of the potentials for investigating structural transformations in Fe was verified using nonequilibrium free energy calculations and molecular dynamics simulations. The results showed that the EAM potential is capable of describing the bcc → fcc and fcc → bcc transformations whereas no transformation was observed for the computationally more expensive BOP potential with the simulation set up used.</description><subject>Alloys</subject><subject>Body centered cubic lattice</subject><subject>Ceramics</subject><subject>Composites</subject><subject>Computer simulation</subject><subject>Crystallography and Scattering Methods</subject><subject>Embedded atom method</subject><subject>Energy consumption</subject><subject>Engineering Thermodynamics</subject><subject>Face centered cubic lattice</subject><subject>Free energy</subject><subject>Glass</subject><subject>Heat and Mass Transfer</subject><subject>Lattices</subject><subject>Metallic Materials</subject><subject>Molecular dynamics</subject><subject>Natural Materials</subject><subject>Phase transitions</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Simulation</subject><subject>Thermodynamics</subject><issn>1547-7037</issn><issn>1863-7345</issn><issn>1934-7243</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kLFOwzAQQC0EEqXwAWyWmA13SWwnY1VRWqkSlSiz5bg2uGqSYrsDf4-rMLAw3Q3v3UmPkHuERwSQTxFRiIYBSga8qBhckAnWomSyrPhl3nklmYRSXpObGPcARSNrMSGbtU7JG0tXfUy69QefvI1U9zu6-dTR0m3QfXRD6HTyQx-p7-nCUheGjs7S0PmYbfrmu9NhBG7JldOHaO9-55S8L5638yVbv76s5rM1MyWKxNrCmVpyKMA6DoimNVwYy7l0FRa7pq10aVsUtRQCUHBbS2fdDgVW1pXGllPyMN49huHrZGNS--EU-vxSYQOFyGRTZQpHyoQhxmCdOgbf6fCtENQ5nBrDqRxOncMpyE4xOjGz_YcNfy7_K_0AOWRwtQ</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Cuppari, M. G. Di V.</creator><creator>Veiga, R. G. A.</creator><creator>Goldenstein, H.</creator><creator>Silva, J. E. Guimarães</creator><creator>Becquart, C. S.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7U5</scope><scope>7XB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>U9A</scope></search><sort><creationdate>20170601</creationdate><title>Lattice Instabilities and Phase Transformations in Fe from Atomistic Simulations</title><author>Cuppari, M. G. Di V. ; Veiga, R. G. A. ; Goldenstein, H. ; Silva, J. E. Guimarães ; Becquart, C. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-b2fc875020ef5011cbc56ce557f412d9b4a3eb1687660165e87fefd1614ef3ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Alloys</topic><topic>Body centered cubic lattice</topic><topic>Ceramics</topic><topic>Composites</topic><topic>Computer simulation</topic><topic>Crystallography and Scattering Methods</topic><topic>Embedded atom method</topic><topic>Energy consumption</topic><topic>Engineering Thermodynamics</topic><topic>Face centered cubic lattice</topic><topic>Free energy</topic><topic>Glass</topic><topic>Heat and Mass Transfer</topic><topic>Lattices</topic><topic>Metallic Materials</topic><topic>Molecular dynamics</topic><topic>Natural Materials</topic><topic>Phase transitions</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Simulation</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cuppari, M. G. Di V.</creatorcontrib><creatorcontrib>Veiga, R. G. A.</creatorcontrib><creatorcontrib>Goldenstein, H.</creatorcontrib><creatorcontrib>Silva, J. E. Guimarães</creatorcontrib><creatorcontrib>Becquart, C. S.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Career and Technical Education</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of phase equilibria and diffusion</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cuppari, M. G. Di V.</au><au>Veiga, R. G. A.</au><au>Goldenstein, H.</au><au>Silva, J. E. Guimarães</au><au>Becquart, C. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lattice Instabilities and Phase Transformations in Fe from Atomistic Simulations</atitle><jtitle>Journal of phase equilibria and diffusion</jtitle><stitle>J. Phase Equilib. Diffus</stitle><date>2017-06-01</date><risdate>2017</risdate><volume>38</volume><issue>3</issue><spage>185</spage><epage>194</epage><pages>185-194</pages><issn>1547-7037</issn><eissn>1863-7345</eissn><eissn>1934-7243</eissn><abstract>The stability of the body- and face-centered cubic lattices corresponding to the α and γ phases of Fe, respectively, as well as the transformation of one phase to the other were investigated by atomistic simulations. Two interatomic potentials were used: the embedded atom method (EAM) potential of Meyer and Entel and the bond order potential (BOP) developed by Müller et al. The suitability of the potentials for investigating structural transformations in Fe was verified using nonequilibrium free energy calculations and molecular dynamics simulations. The results showed that the EAM potential is capable of describing the bcc → fcc and fcc → bcc transformations whereas no transformation was observed for the computationally more expensive BOP potential with the simulation set up used.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11669-017-0524-0</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1547-7037 |
ispartof | Journal of phase equilibria and diffusion, 2017-06, Vol.38 (3), p.185-194 |
issn | 1547-7037 1863-7345 1934-7243 |
language | eng |
recordid | cdi_proquest_journals_1902616194 |
source | SpringerLink (Online service) |
subjects | Alloys Body centered cubic lattice Ceramics Composites Computer simulation Crystallography and Scattering Methods Embedded atom method Energy consumption Engineering Thermodynamics Face centered cubic lattice Free energy Glass Heat and Mass Transfer Lattices Metallic Materials Molecular dynamics Natural Materials Phase transitions Physics Physics and Astronomy Simulation Thermodynamics |
title | Lattice Instabilities and Phase Transformations in Fe from Atomistic Simulations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T08%3A55%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lattice%20Instabilities%20and%20Phase%20Transformations%20in%20Fe%20from%20Atomistic%20Simulations&rft.jtitle=Journal%20of%20phase%20equilibria%20and%20diffusion&rft.au=Cuppari,%20M.%20G.%20Di%20V.&rft.date=2017-06-01&rft.volume=38&rft.issue=3&rft.spage=185&rft.epage=194&rft.pages=185-194&rft.issn=1547-7037&rft.eissn=1863-7345&rft_id=info:doi/10.1007/s11669-017-0524-0&rft_dat=%3Cproquest_cross%3E1902616194%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1902616194&rft_id=info:pmid/&rfr_iscdi=true |