Lattice Instabilities and Phase Transformations in Fe from Atomistic Simulations

The stability of the body- and face-centered cubic lattices corresponding to the α and γ phases of Fe, respectively, as well as the transformation of one phase to the other were investigated by atomistic simulations. Two interatomic potentials were used: the embedded atom method (EAM) potential of M...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of phase equilibria and diffusion 2017-06, Vol.38 (3), p.185-194
Hauptverfasser: Cuppari, M. G. Di V., Veiga, R. G. A., Goldenstein, H., Silva, J. E. Guimarães, Becquart, C. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 194
container_issue 3
container_start_page 185
container_title Journal of phase equilibria and diffusion
container_volume 38
creator Cuppari, M. G. Di V.
Veiga, R. G. A.
Goldenstein, H.
Silva, J. E. Guimarães
Becquart, C. S.
description The stability of the body- and face-centered cubic lattices corresponding to the α and γ phases of Fe, respectively, as well as the transformation of one phase to the other were investigated by atomistic simulations. Two interatomic potentials were used: the embedded atom method (EAM) potential of Meyer and Entel and the bond order potential (BOP) developed by Müller et al. The suitability of the potentials for investigating structural transformations in Fe was verified using nonequilibrium free energy calculations and molecular dynamics simulations. The results showed that the EAM potential is capable of describing the bcc → fcc and fcc → bcc transformations whereas no transformation was observed for the computationally more expensive BOP potential with the simulation set up used.
doi_str_mv 10.1007/s11669-017-0524-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1902616194</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1902616194</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-b2fc875020ef5011cbc56ce557f412d9b4a3eb1687660165e87fefd1614ef3ce3</originalsourceid><addsrcrecordid>eNp1kLFOwzAQQC0EEqXwAWyWmA13SWwnY1VRWqkSlSiz5bg2uGqSYrsDf4-rMLAw3Q3v3UmPkHuERwSQTxFRiIYBSga8qBhckAnWomSyrPhl3nklmYRSXpObGPcARSNrMSGbtU7JG0tXfUy69QefvI1U9zu6-dTR0m3QfXRD6HTyQx-p7-nCUheGjs7S0PmYbfrmu9NhBG7JldOHaO9-55S8L5638yVbv76s5rM1MyWKxNrCmVpyKMA6DoimNVwYy7l0FRa7pq10aVsUtRQCUHBbS2fdDgVW1pXGllPyMN49huHrZGNS--EU-vxSYQOFyGRTZQpHyoQhxmCdOgbf6fCtENQ5nBrDqRxOncMpyE4xOjGz_YcNfy7_K_0AOWRwtQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1902616194</pqid></control><display><type>article</type><title>Lattice Instabilities and Phase Transformations in Fe from Atomistic Simulations</title><source>SpringerLink (Online service)</source><creator>Cuppari, M. G. Di V. ; Veiga, R. G. A. ; Goldenstein, H. ; Silva, J. E. Guimarães ; Becquart, C. S.</creator><creatorcontrib>Cuppari, M. G. Di V. ; Veiga, R. G. A. ; Goldenstein, H. ; Silva, J. E. Guimarães ; Becquart, C. S.</creatorcontrib><description>The stability of the body- and face-centered cubic lattices corresponding to the α and γ phases of Fe, respectively, as well as the transformation of one phase to the other were investigated by atomistic simulations. Two interatomic potentials were used: the embedded atom method (EAM) potential of Meyer and Entel and the bond order potential (BOP) developed by Müller et al. The suitability of the potentials for investigating structural transformations in Fe was verified using nonequilibrium free energy calculations and molecular dynamics simulations. The results showed that the EAM potential is capable of describing the bcc → fcc and fcc → bcc transformations whereas no transformation was observed for the computationally more expensive BOP potential with the simulation set up used.</description><identifier>ISSN: 1547-7037</identifier><identifier>EISSN: 1863-7345</identifier><identifier>EISSN: 1934-7243</identifier><identifier>DOI: 10.1007/s11669-017-0524-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Alloys ; Body centered cubic lattice ; Ceramics ; Composites ; Computer simulation ; Crystallography and Scattering Methods ; Embedded atom method ; Energy consumption ; Engineering Thermodynamics ; Face centered cubic lattice ; Free energy ; Glass ; Heat and Mass Transfer ; Lattices ; Metallic Materials ; Molecular dynamics ; Natural Materials ; Phase transitions ; Physics ; Physics and Astronomy ; Simulation ; Thermodynamics</subject><ispartof>Journal of phase equilibria and diffusion, 2017-06, Vol.38 (3), p.185-194</ispartof><rights>ASM International 2017</rights><rights>Journal of Phase Equilibria and Diffusion is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-b2fc875020ef5011cbc56ce557f412d9b4a3eb1687660165e87fefd1614ef3ce3</citedby><cites>FETCH-LOGICAL-c316t-b2fc875020ef5011cbc56ce557f412d9b4a3eb1687660165e87fefd1614ef3ce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11669-017-0524-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11669-017-0524-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Cuppari, M. G. Di V.</creatorcontrib><creatorcontrib>Veiga, R. G. A.</creatorcontrib><creatorcontrib>Goldenstein, H.</creatorcontrib><creatorcontrib>Silva, J. E. Guimarães</creatorcontrib><creatorcontrib>Becquart, C. S.</creatorcontrib><title>Lattice Instabilities and Phase Transformations in Fe from Atomistic Simulations</title><title>Journal of phase equilibria and diffusion</title><addtitle>J. Phase Equilib. Diffus</addtitle><description>The stability of the body- and face-centered cubic lattices corresponding to the α and γ phases of Fe, respectively, as well as the transformation of one phase to the other were investigated by atomistic simulations. Two interatomic potentials were used: the embedded atom method (EAM) potential of Meyer and Entel and the bond order potential (BOP) developed by Müller et al. The suitability of the potentials for investigating structural transformations in Fe was verified using nonequilibrium free energy calculations and molecular dynamics simulations. The results showed that the EAM potential is capable of describing the bcc → fcc and fcc → bcc transformations whereas no transformation was observed for the computationally more expensive BOP potential with the simulation set up used.</description><subject>Alloys</subject><subject>Body centered cubic lattice</subject><subject>Ceramics</subject><subject>Composites</subject><subject>Computer simulation</subject><subject>Crystallography and Scattering Methods</subject><subject>Embedded atom method</subject><subject>Energy consumption</subject><subject>Engineering Thermodynamics</subject><subject>Face centered cubic lattice</subject><subject>Free energy</subject><subject>Glass</subject><subject>Heat and Mass Transfer</subject><subject>Lattices</subject><subject>Metallic Materials</subject><subject>Molecular dynamics</subject><subject>Natural Materials</subject><subject>Phase transitions</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Simulation</subject><subject>Thermodynamics</subject><issn>1547-7037</issn><issn>1863-7345</issn><issn>1934-7243</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kLFOwzAQQC0EEqXwAWyWmA13SWwnY1VRWqkSlSiz5bg2uGqSYrsDf4-rMLAw3Q3v3UmPkHuERwSQTxFRiIYBSga8qBhckAnWomSyrPhl3nklmYRSXpObGPcARSNrMSGbtU7JG0tXfUy69QefvI1U9zu6-dTR0m3QfXRD6HTyQx-p7-nCUheGjs7S0PmYbfrmu9NhBG7JldOHaO9-55S8L5638yVbv76s5rM1MyWKxNrCmVpyKMA6DoimNVwYy7l0FRa7pq10aVsUtRQCUHBbS2fdDgVW1pXGllPyMN49huHrZGNS--EU-vxSYQOFyGRTZQpHyoQhxmCdOgbf6fCtENQ5nBrDqRxOncMpyE4xOjGz_YcNfy7_K_0AOWRwtQ</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Cuppari, M. G. Di V.</creator><creator>Veiga, R. G. A.</creator><creator>Goldenstein, H.</creator><creator>Silva, J. E. Guimarães</creator><creator>Becquart, C. S.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7U5</scope><scope>7XB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>U9A</scope></search><sort><creationdate>20170601</creationdate><title>Lattice Instabilities and Phase Transformations in Fe from Atomistic Simulations</title><author>Cuppari, M. G. Di V. ; Veiga, R. G. A. ; Goldenstein, H. ; Silva, J. E. Guimarães ; Becquart, C. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-b2fc875020ef5011cbc56ce557f412d9b4a3eb1687660165e87fefd1614ef3ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Alloys</topic><topic>Body centered cubic lattice</topic><topic>Ceramics</topic><topic>Composites</topic><topic>Computer simulation</topic><topic>Crystallography and Scattering Methods</topic><topic>Embedded atom method</topic><topic>Energy consumption</topic><topic>Engineering Thermodynamics</topic><topic>Face centered cubic lattice</topic><topic>Free energy</topic><topic>Glass</topic><topic>Heat and Mass Transfer</topic><topic>Lattices</topic><topic>Metallic Materials</topic><topic>Molecular dynamics</topic><topic>Natural Materials</topic><topic>Phase transitions</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Simulation</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cuppari, M. G. Di V.</creatorcontrib><creatorcontrib>Veiga, R. G. A.</creatorcontrib><creatorcontrib>Goldenstein, H.</creatorcontrib><creatorcontrib>Silva, J. E. Guimarães</creatorcontrib><creatorcontrib>Becquart, C. S.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Career and Technical Education</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of phase equilibria and diffusion</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cuppari, M. G. Di V.</au><au>Veiga, R. G. A.</au><au>Goldenstein, H.</au><au>Silva, J. E. Guimarães</au><au>Becquart, C. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lattice Instabilities and Phase Transformations in Fe from Atomistic Simulations</atitle><jtitle>Journal of phase equilibria and diffusion</jtitle><stitle>J. Phase Equilib. Diffus</stitle><date>2017-06-01</date><risdate>2017</risdate><volume>38</volume><issue>3</issue><spage>185</spage><epage>194</epage><pages>185-194</pages><issn>1547-7037</issn><eissn>1863-7345</eissn><eissn>1934-7243</eissn><abstract>The stability of the body- and face-centered cubic lattices corresponding to the α and γ phases of Fe, respectively, as well as the transformation of one phase to the other were investigated by atomistic simulations. Two interatomic potentials were used: the embedded atom method (EAM) potential of Meyer and Entel and the bond order potential (BOP) developed by Müller et al. The suitability of the potentials for investigating structural transformations in Fe was verified using nonequilibrium free energy calculations and molecular dynamics simulations. The results showed that the EAM potential is capable of describing the bcc → fcc and fcc → bcc transformations whereas no transformation was observed for the computationally more expensive BOP potential with the simulation set up used.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11669-017-0524-0</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1547-7037
ispartof Journal of phase equilibria and diffusion, 2017-06, Vol.38 (3), p.185-194
issn 1547-7037
1863-7345
1934-7243
language eng
recordid cdi_proquest_journals_1902616194
source SpringerLink (Online service)
subjects Alloys
Body centered cubic lattice
Ceramics
Composites
Computer simulation
Crystallography and Scattering Methods
Embedded atom method
Energy consumption
Engineering Thermodynamics
Face centered cubic lattice
Free energy
Glass
Heat and Mass Transfer
Lattices
Metallic Materials
Molecular dynamics
Natural Materials
Phase transitions
Physics
Physics and Astronomy
Simulation
Thermodynamics
title Lattice Instabilities and Phase Transformations in Fe from Atomistic Simulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T08%3A55%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lattice%20Instabilities%20and%20Phase%20Transformations%20in%20Fe%20from%20Atomistic%20Simulations&rft.jtitle=Journal%20of%20phase%20equilibria%20and%20diffusion&rft.au=Cuppari,%20M.%20G.%20Di%20V.&rft.date=2017-06-01&rft.volume=38&rft.issue=3&rft.spage=185&rft.epage=194&rft.pages=185-194&rft.issn=1547-7037&rft.eissn=1863-7345&rft_id=info:doi/10.1007/s11669-017-0524-0&rft_dat=%3Cproquest_cross%3E1902616194%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1902616194&rft_id=info:pmid/&rfr_iscdi=true