Invariant integral: The earliest works and most recent application

The present paper embraces mainly the three-year period of 1966 to 1968 when the invariant integral of fracture mechanics appeared and became popular, and the last two years of 2015 to 2016 when the neoclassic cosmology based on the invariant integral came up. A mention is given to the previous work...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical mesomechanics 2017-04, Vol.20 (2), p.115-124
1. Verfasser: Cherepanov, G. P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 124
container_issue 2
container_start_page 115
container_title Physical mesomechanics
container_volume 20
creator Cherepanov, G. P.
description The present paper embraces mainly the three-year period of 1966 to 1968 when the invariant integral of fracture mechanics appeared and became popular, and the last two years of 2015 to 2016 when the neoclassic cosmology based on the invariant integral came up. A mention is given to the previous works of Euler, Cauchy, Maxwell, Nother, Gunther and Eshelby who dealt with invariant integrals in mathematics, hydrodynamics, electrodynamics, and the theory of dislocations. A brief review is given of the creation of the invariant integral of fracture mechanics under static and dynamic conditions for a solid continuum including elastic, plastic and viscoelastic materials, as well as of some of its most important applications, ramifications and generalizations for other physical fields. The initial phase of the expansion and revolution of the large-scale universe is studied in the framework of the neoclassic approach, including the Big Bang and the Dark Energy; it is shown that the spheroidal shape of the universe assumed at the Big Bang retains its eccentricity constant in the initial phase. The assumption of a superphoton as a primordial universe was analyzed.
doi_str_mv 10.1134/S1029959917020011
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1902155378</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1902155378</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-c14b2ac36e43bdb999cdfd600c2a0e1cf91b61cc2eadd901b32c84849529ffb93</originalsourceid><addsrcrecordid>eNp1UEtPwzAMjhBITGM_gFslzgU7SbuaG0w8Jk3iwDhXaZqMji4tSQfi35OpHJAQvtjW97D1MXaOcIko5NUzAifKiHAOHADxiE2QCNJMcnkc5winB_yUzULYQizBSQJN2O3SfSjfKDckjRvMxqv2Olm_msQo3zYmDMln599Colyd7Lq4eqNNJKu-bxuthqZzZ-zEqjaY2U-fspf7u_XiMV09PSwXN6tU87wYUo2y4kqL3EhR1RUR6drWOYDmCgxqS1jlqDU3qq4JsBJcF7KQlHGytiIxZRejb--79318rdx2e-_iyRIJOGaZmBeRhSNL-y4Eb2zZ-2an_FeJUB7SKv-kFTV81ITIdRvjfzn_K_oGObZriA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1902155378</pqid></control><display><type>article</type><title>Invariant integral: The earliest works and most recent application</title><source>SpringerLink Journals</source><creator>Cherepanov, G. P.</creator><creatorcontrib>Cherepanov, G. P.</creatorcontrib><description>The present paper embraces mainly the three-year period of 1966 to 1968 when the invariant integral of fracture mechanics appeared and became popular, and the last two years of 2015 to 2016 when the neoclassic cosmology based on the invariant integral came up. A mention is given to the previous works of Euler, Cauchy, Maxwell, Nother, Gunther and Eshelby who dealt with invariant integrals in mathematics, hydrodynamics, electrodynamics, and the theory of dislocations. A brief review is given of the creation of the invariant integral of fracture mechanics under static and dynamic conditions for a solid continuum including elastic, plastic and viscoelastic materials, as well as of some of its most important applications, ramifications and generalizations for other physical fields. The initial phase of the expansion and revolution of the large-scale universe is studied in the framework of the neoclassic approach, including the Big Bang and the Dark Energy; it is shown that the spheroidal shape of the universe assumed at the Big Bang retains its eccentricity constant in the initial phase. The assumption of a superphoton as a primordial universe was analyzed.</description><identifier>ISSN: 1029-9599</identifier><identifier>EISSN: 1990-5424</identifier><identifier>DOI: 10.1134/S1029959917020011</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Big bang cosmology ; Classical Mechanics ; Computational fluid dynamics ; Cosmology ; Dark energy ; Dislocations ; Electrodynamics ; Fluid flow ; Fracture mechanics ; Hydrodynamics ; Integrals ; Invariants ; Materials Science ; Physics ; Physics and Astronomy ; Solid State Physics ; Universe ; Viscoelastic materials ; Viscoelasticity</subject><ispartof>Physical mesomechanics, 2017-04, Vol.20 (2), p.115-124</ispartof><rights>Pleiades Publishing, Ltd. 2017</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-c14b2ac36e43bdb999cdfd600c2a0e1cf91b61cc2eadd901b32c84849529ffb93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1029959917020011$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1029959917020011$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Cherepanov, G. P.</creatorcontrib><title>Invariant integral: The earliest works and most recent application</title><title>Physical mesomechanics</title><addtitle>Phys Mesomech</addtitle><description>The present paper embraces mainly the three-year period of 1966 to 1968 when the invariant integral of fracture mechanics appeared and became popular, and the last two years of 2015 to 2016 when the neoclassic cosmology based on the invariant integral came up. A mention is given to the previous works of Euler, Cauchy, Maxwell, Nother, Gunther and Eshelby who dealt with invariant integrals in mathematics, hydrodynamics, electrodynamics, and the theory of dislocations. A brief review is given of the creation of the invariant integral of fracture mechanics under static and dynamic conditions for a solid continuum including elastic, plastic and viscoelastic materials, as well as of some of its most important applications, ramifications and generalizations for other physical fields. The initial phase of the expansion and revolution of the large-scale universe is studied in the framework of the neoclassic approach, including the Big Bang and the Dark Energy; it is shown that the spheroidal shape of the universe assumed at the Big Bang retains its eccentricity constant in the initial phase. The assumption of a superphoton as a primordial universe was analyzed.</description><subject>Big bang cosmology</subject><subject>Classical Mechanics</subject><subject>Computational fluid dynamics</subject><subject>Cosmology</subject><subject>Dark energy</subject><subject>Dislocations</subject><subject>Electrodynamics</subject><subject>Fluid flow</subject><subject>Fracture mechanics</subject><subject>Hydrodynamics</subject><subject>Integrals</subject><subject>Invariants</subject><subject>Materials Science</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Solid State Physics</subject><subject>Universe</subject><subject>Viscoelastic materials</subject><subject>Viscoelasticity</subject><issn>1029-9599</issn><issn>1990-5424</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1UEtPwzAMjhBITGM_gFslzgU7SbuaG0w8Jk3iwDhXaZqMji4tSQfi35OpHJAQvtjW97D1MXaOcIko5NUzAifKiHAOHADxiE2QCNJMcnkc5winB_yUzULYQizBSQJN2O3SfSjfKDckjRvMxqv2Olm_msQo3zYmDMln599Colyd7Lq4eqNNJKu-bxuthqZzZ-zEqjaY2U-fspf7u_XiMV09PSwXN6tU87wYUo2y4kqL3EhR1RUR6drWOYDmCgxqS1jlqDU3qq4JsBJcF7KQlHGytiIxZRejb--79318rdx2e-_iyRIJOGaZmBeRhSNL-y4Eb2zZ-2an_FeJUB7SKv-kFTV81ITIdRvjfzn_K_oGObZriA</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Cherepanov, G. P.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170401</creationdate><title>Invariant integral: The earliest works and most recent application</title><author>Cherepanov, G. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-c14b2ac36e43bdb999cdfd600c2a0e1cf91b61cc2eadd901b32c84849529ffb93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Big bang cosmology</topic><topic>Classical Mechanics</topic><topic>Computational fluid dynamics</topic><topic>Cosmology</topic><topic>Dark energy</topic><topic>Dislocations</topic><topic>Electrodynamics</topic><topic>Fluid flow</topic><topic>Fracture mechanics</topic><topic>Hydrodynamics</topic><topic>Integrals</topic><topic>Invariants</topic><topic>Materials Science</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Solid State Physics</topic><topic>Universe</topic><topic>Viscoelastic materials</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cherepanov, G. P.</creatorcontrib><collection>CrossRef</collection><jtitle>Physical mesomechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cherepanov, G. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Invariant integral: The earliest works and most recent application</atitle><jtitle>Physical mesomechanics</jtitle><stitle>Phys Mesomech</stitle><date>2017-04-01</date><risdate>2017</risdate><volume>20</volume><issue>2</issue><spage>115</spage><epage>124</epage><pages>115-124</pages><issn>1029-9599</issn><eissn>1990-5424</eissn><abstract>The present paper embraces mainly the three-year period of 1966 to 1968 when the invariant integral of fracture mechanics appeared and became popular, and the last two years of 2015 to 2016 when the neoclassic cosmology based on the invariant integral came up. A mention is given to the previous works of Euler, Cauchy, Maxwell, Nother, Gunther and Eshelby who dealt with invariant integrals in mathematics, hydrodynamics, electrodynamics, and the theory of dislocations. A brief review is given of the creation of the invariant integral of fracture mechanics under static and dynamic conditions for a solid continuum including elastic, plastic and viscoelastic materials, as well as of some of its most important applications, ramifications and generalizations for other physical fields. The initial phase of the expansion and revolution of the large-scale universe is studied in the framework of the neoclassic approach, including the Big Bang and the Dark Energy; it is shown that the spheroidal shape of the universe assumed at the Big Bang retains its eccentricity constant in the initial phase. The assumption of a superphoton as a primordial universe was analyzed.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1029959917020011</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1029-9599
ispartof Physical mesomechanics, 2017-04, Vol.20 (2), p.115-124
issn 1029-9599
1990-5424
language eng
recordid cdi_proquest_journals_1902155378
source SpringerLink Journals
subjects Big bang cosmology
Classical Mechanics
Computational fluid dynamics
Cosmology
Dark energy
Dislocations
Electrodynamics
Fluid flow
Fracture mechanics
Hydrodynamics
Integrals
Invariants
Materials Science
Physics
Physics and Astronomy
Solid State Physics
Universe
Viscoelastic materials
Viscoelasticity
title Invariant integral: The earliest works and most recent application
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T03%3A16%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Invariant%20integral:%20The%20earliest%20works%20and%20most%20recent%20application&rft.jtitle=Physical%20mesomechanics&rft.au=Cherepanov,%20G.%20P.&rft.date=2017-04-01&rft.volume=20&rft.issue=2&rft.spage=115&rft.epage=124&rft.pages=115-124&rft.issn=1029-9599&rft.eissn=1990-5424&rft_id=info:doi/10.1134/S1029959917020011&rft_dat=%3Cproquest_cross%3E1902155378%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1902155378&rft_id=info:pmid/&rfr_iscdi=true