Invariant integral: The earliest works and most recent application
The present paper embraces mainly the three-year period of 1966 to 1968 when the invariant integral of fracture mechanics appeared and became popular, and the last two years of 2015 to 2016 when the neoclassic cosmology based on the invariant integral came up. A mention is given to the previous work...
Gespeichert in:
Veröffentlicht in: | Physical mesomechanics 2017-04, Vol.20 (2), p.115-124 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 124 |
---|---|
container_issue | 2 |
container_start_page | 115 |
container_title | Physical mesomechanics |
container_volume | 20 |
creator | Cherepanov, G. P. |
description | The present paper embraces mainly the three-year period of 1966 to 1968 when the invariant integral of fracture mechanics appeared and became popular, and the last two years of 2015 to 2016 when the neoclassic cosmology based on the invariant integral came up. A mention is given to the previous works of Euler, Cauchy, Maxwell, Nother, Gunther and Eshelby who dealt with invariant integrals in mathematics, hydrodynamics, electrodynamics, and the theory of dislocations. A brief review is given of the creation of the invariant integral of fracture mechanics under static and dynamic conditions for a solid continuum including elastic, plastic and viscoelastic materials, as well as of some of its most important applications, ramifications and generalizations for other physical fields. The initial phase of the expansion and revolution of the large-scale universe is studied in the framework of the neoclassic approach, including the Big Bang and the Dark Energy; it is shown that the spheroidal shape of the universe assumed at the Big Bang retains its eccentricity constant in the initial phase. The assumption of a superphoton as a primordial universe was analyzed. |
doi_str_mv | 10.1134/S1029959917020011 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1902155378</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1902155378</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-c14b2ac36e43bdb999cdfd600c2a0e1cf91b61cc2eadd901b32c84849529ffb93</originalsourceid><addsrcrecordid>eNp1UEtPwzAMjhBITGM_gFslzgU7SbuaG0w8Jk3iwDhXaZqMji4tSQfi35OpHJAQvtjW97D1MXaOcIko5NUzAifKiHAOHADxiE2QCNJMcnkc5winB_yUzULYQizBSQJN2O3SfSjfKDckjRvMxqv2Olm_msQo3zYmDMln599Colyd7Lq4eqNNJKu-bxuthqZzZ-zEqjaY2U-fspf7u_XiMV09PSwXN6tU87wYUo2y4kqL3EhR1RUR6drWOYDmCgxqS1jlqDU3qq4JsBJcF7KQlHGytiIxZRejb--79318rdx2e-_iyRIJOGaZmBeRhSNL-y4Eb2zZ-2an_FeJUB7SKv-kFTV81ITIdRvjfzn_K_oGObZriA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1902155378</pqid></control><display><type>article</type><title>Invariant integral: The earliest works and most recent application</title><source>SpringerLink Journals</source><creator>Cherepanov, G. P.</creator><creatorcontrib>Cherepanov, G. P.</creatorcontrib><description>The present paper embraces mainly the three-year period of 1966 to 1968 when the invariant integral of fracture mechanics appeared and became popular, and the last two years of 2015 to 2016 when the neoclassic cosmology based on the invariant integral came up. A mention is given to the previous works of Euler, Cauchy, Maxwell, Nother, Gunther and Eshelby who dealt with invariant integrals in mathematics, hydrodynamics, electrodynamics, and the theory of dislocations. A brief review is given of the creation of the invariant integral of fracture mechanics under static and dynamic conditions for a solid continuum including elastic, plastic and viscoelastic materials, as well as of some of its most important applications, ramifications and generalizations for other physical fields. The initial phase of the expansion and revolution of the large-scale universe is studied in the framework of the neoclassic approach, including the Big Bang and the Dark Energy; it is shown that the spheroidal shape of the universe assumed at the Big Bang retains its eccentricity constant in the initial phase. The assumption of a superphoton as a primordial universe was analyzed.</description><identifier>ISSN: 1029-9599</identifier><identifier>EISSN: 1990-5424</identifier><identifier>DOI: 10.1134/S1029959917020011</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Big bang cosmology ; Classical Mechanics ; Computational fluid dynamics ; Cosmology ; Dark energy ; Dislocations ; Electrodynamics ; Fluid flow ; Fracture mechanics ; Hydrodynamics ; Integrals ; Invariants ; Materials Science ; Physics ; Physics and Astronomy ; Solid State Physics ; Universe ; Viscoelastic materials ; Viscoelasticity</subject><ispartof>Physical mesomechanics, 2017-04, Vol.20 (2), p.115-124</ispartof><rights>Pleiades Publishing, Ltd. 2017</rights><rights>Copyright Springer Science & Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-c14b2ac36e43bdb999cdfd600c2a0e1cf91b61cc2eadd901b32c84849529ffb93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1029959917020011$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1029959917020011$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Cherepanov, G. P.</creatorcontrib><title>Invariant integral: The earliest works and most recent application</title><title>Physical mesomechanics</title><addtitle>Phys Mesomech</addtitle><description>The present paper embraces mainly the three-year period of 1966 to 1968 when the invariant integral of fracture mechanics appeared and became popular, and the last two years of 2015 to 2016 when the neoclassic cosmology based on the invariant integral came up. A mention is given to the previous works of Euler, Cauchy, Maxwell, Nother, Gunther and Eshelby who dealt with invariant integrals in mathematics, hydrodynamics, electrodynamics, and the theory of dislocations. A brief review is given of the creation of the invariant integral of fracture mechanics under static and dynamic conditions for a solid continuum including elastic, plastic and viscoelastic materials, as well as of some of its most important applications, ramifications and generalizations for other physical fields. The initial phase of the expansion and revolution of the large-scale universe is studied in the framework of the neoclassic approach, including the Big Bang and the Dark Energy; it is shown that the spheroidal shape of the universe assumed at the Big Bang retains its eccentricity constant in the initial phase. The assumption of a superphoton as a primordial universe was analyzed.</description><subject>Big bang cosmology</subject><subject>Classical Mechanics</subject><subject>Computational fluid dynamics</subject><subject>Cosmology</subject><subject>Dark energy</subject><subject>Dislocations</subject><subject>Electrodynamics</subject><subject>Fluid flow</subject><subject>Fracture mechanics</subject><subject>Hydrodynamics</subject><subject>Integrals</subject><subject>Invariants</subject><subject>Materials Science</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Solid State Physics</subject><subject>Universe</subject><subject>Viscoelastic materials</subject><subject>Viscoelasticity</subject><issn>1029-9599</issn><issn>1990-5424</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1UEtPwzAMjhBITGM_gFslzgU7SbuaG0w8Jk3iwDhXaZqMji4tSQfi35OpHJAQvtjW97D1MXaOcIko5NUzAifKiHAOHADxiE2QCNJMcnkc5winB_yUzULYQizBSQJN2O3SfSjfKDckjRvMxqv2Olm_msQo3zYmDMln599Colyd7Lq4eqNNJKu-bxuthqZzZ-zEqjaY2U-fspf7u_XiMV09PSwXN6tU87wYUo2y4kqL3EhR1RUR6drWOYDmCgxqS1jlqDU3qq4JsBJcF7KQlHGytiIxZRejb--79318rdx2e-_iyRIJOGaZmBeRhSNL-y4Eb2zZ-2an_FeJUB7SKv-kFTV81ITIdRvjfzn_K_oGObZriA</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Cherepanov, G. P.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170401</creationdate><title>Invariant integral: The earliest works and most recent application</title><author>Cherepanov, G. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-c14b2ac36e43bdb999cdfd600c2a0e1cf91b61cc2eadd901b32c84849529ffb93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Big bang cosmology</topic><topic>Classical Mechanics</topic><topic>Computational fluid dynamics</topic><topic>Cosmology</topic><topic>Dark energy</topic><topic>Dislocations</topic><topic>Electrodynamics</topic><topic>Fluid flow</topic><topic>Fracture mechanics</topic><topic>Hydrodynamics</topic><topic>Integrals</topic><topic>Invariants</topic><topic>Materials Science</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Solid State Physics</topic><topic>Universe</topic><topic>Viscoelastic materials</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cherepanov, G. P.</creatorcontrib><collection>CrossRef</collection><jtitle>Physical mesomechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cherepanov, G. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Invariant integral: The earliest works and most recent application</atitle><jtitle>Physical mesomechanics</jtitle><stitle>Phys Mesomech</stitle><date>2017-04-01</date><risdate>2017</risdate><volume>20</volume><issue>2</issue><spage>115</spage><epage>124</epage><pages>115-124</pages><issn>1029-9599</issn><eissn>1990-5424</eissn><abstract>The present paper embraces mainly the three-year period of 1966 to 1968 when the invariant integral of fracture mechanics appeared and became popular, and the last two years of 2015 to 2016 when the neoclassic cosmology based on the invariant integral came up. A mention is given to the previous works of Euler, Cauchy, Maxwell, Nother, Gunther and Eshelby who dealt with invariant integrals in mathematics, hydrodynamics, electrodynamics, and the theory of dislocations. A brief review is given of the creation of the invariant integral of fracture mechanics under static and dynamic conditions for a solid continuum including elastic, plastic and viscoelastic materials, as well as of some of its most important applications, ramifications and generalizations for other physical fields. The initial phase of the expansion and revolution of the large-scale universe is studied in the framework of the neoclassic approach, including the Big Bang and the Dark Energy; it is shown that the spheroidal shape of the universe assumed at the Big Bang retains its eccentricity constant in the initial phase. The assumption of a superphoton as a primordial universe was analyzed.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1029959917020011</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1029-9599 |
ispartof | Physical mesomechanics, 2017-04, Vol.20 (2), p.115-124 |
issn | 1029-9599 1990-5424 |
language | eng |
recordid | cdi_proquest_journals_1902155378 |
source | SpringerLink Journals |
subjects | Big bang cosmology Classical Mechanics Computational fluid dynamics Cosmology Dark energy Dislocations Electrodynamics Fluid flow Fracture mechanics Hydrodynamics Integrals Invariants Materials Science Physics Physics and Astronomy Solid State Physics Universe Viscoelastic materials Viscoelasticity |
title | Invariant integral: The earliest works and most recent application |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T03%3A16%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Invariant%20integral:%20The%20earliest%20works%20and%20most%20recent%20application&rft.jtitle=Physical%20mesomechanics&rft.au=Cherepanov,%20G.%20P.&rft.date=2017-04-01&rft.volume=20&rft.issue=2&rft.spage=115&rft.epage=124&rft.pages=115-124&rft.issn=1029-9599&rft.eissn=1990-5424&rft_id=info:doi/10.1134/S1029959917020011&rft_dat=%3Cproquest_cross%3E1902155378%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1902155378&rft_id=info:pmid/&rfr_iscdi=true |