On the computation of measure-valued solutions

A standard paradigm for the existence of solutions in fluid dynamics is based on the construction of sequences of approximate solutions or approximate minimizers. This approach faces serious obstacles, most notably in multi-dimensional problems, where the persistence of oscillations at ever finer sc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta numerica 2016-05, Vol.25, p.567-679
Hauptverfasser: Fjordholm, Ulrik S., Mishra, Siddhartha, Tadmor, Eitan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 679
container_issue
container_start_page 567
container_title Acta numerica
container_volume 25
creator Fjordholm, Ulrik S.
Mishra, Siddhartha
Tadmor, Eitan
description A standard paradigm for the existence of solutions in fluid dynamics is based on the construction of sequences of approximate solutions or approximate minimizers. This approach faces serious obstacles, most notably in multi-dimensional problems, where the persistence of oscillations at ever finer scales prevents compactness. Indeed, these oscillations are an indication, consistent with recent theoretical results, of the possible lack of existence/uniqueness of solutions within the standard framework of integrable functions. It is in this context that Young measures – parametrized probability measures which can describe the limits of such oscillatory sequences – offer the more general paradigm of measure-valued solutions for these problems. We present viable numerical algorithms to compute approximate measure-valued solutions, based on the realization of approximate measures as laws of Monte Carlo sampled random fields. We prove convergence of these algorithms to measure-valued solutions for the equations of compressible and incompressible inviscid fluid dynamics, and present a large number of numerical experiments which provide convincing evidence for the viability of the new paradigm. We also discuss the use of these algorithms, and their extensions, in uncertainty quantification and contexts other than fluid dynamics, such as non-convex variational problems in materials science.
doi_str_mv 10.1017/S0962492916000088
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1902013700</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0962492916000088</cupid><sourcerecordid>1902013700</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-854c3cd00856011c6e1f189dfa38ee99d9130c87b4158b1c4627af8d9d6d83a73</originalsourceid><addsrcrecordid>eNp1kM1LxDAQxYMoWFf_AG8Fz11nmjQfR1n8goU9qOeSJql2aZuatIL_vS27B0Gcyxze-70ZHiHXCGsEFLcvoHjOVK6QwzxSnpAEmWAZFCBPSbLI2aKfk4sY9wCYC8YTst716fjhUuO7YRr12Pg-9XXaOR2n4LIv3U7OptG30yLFS3JW6za6q-NekbeH-9fNU7bdPT5v7raZYRTHTBbMUGPnPwoOiIY7rFEqW2sqnVPKKqRgpKgYFrJCw3gudC2tstxKqgVdkZtD7hD85-TiWO79FPr5ZIkKckAqAGYXHlwm-BiDq8shNJ0O3yVCudRS_qllZuiR0V0VGvvufkX_S_0AFntilA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1902013700</pqid></control><display><type>article</type><title>On the computation of measure-valued solutions</title><source>Cambridge University Press Journals Complete</source><creator>Fjordholm, Ulrik S. ; Mishra, Siddhartha ; Tadmor, Eitan</creator><creatorcontrib>Fjordholm, Ulrik S. ; Mishra, Siddhartha ; Tadmor, Eitan</creatorcontrib><description>A standard paradigm for the existence of solutions in fluid dynamics is based on the construction of sequences of approximate solutions or approximate minimizers. This approach faces serious obstacles, most notably in multi-dimensional problems, where the persistence of oscillations at ever finer scales prevents compactness. Indeed, these oscillations are an indication, consistent with recent theoretical results, of the possible lack of existence/uniqueness of solutions within the standard framework of integrable functions. It is in this context that Young measures – parametrized probability measures which can describe the limits of such oscillatory sequences – offer the more general paradigm of measure-valued solutions for these problems. We present viable numerical algorithms to compute approximate measure-valued solutions, based on the realization of approximate measures as laws of Monte Carlo sampled random fields. We prove convergence of these algorithms to measure-valued solutions for the equations of compressible and incompressible inviscid fluid dynamics, and present a large number of numerical experiments which provide convincing evidence for the viability of the new paradigm. We also discuss the use of these algorithms, and their extensions, in uncertainty quantification and contexts other than fluid dynamics, such as non-convex variational problems in materials science.</description><identifier>ISSN: 0962-4929</identifier><identifier>EISSN: 1474-0508</identifier><identifier>DOI: 10.1017/S0962492916000088</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Algorithms ; Applied mathematics ; Astrophysics ; Boundary conditions ; Colleges &amp; universities ; Compressibility ; Computational fluid dynamics ; Computer simulation ; Eulers equations ; Fluid flow ; Incompressible flow ; Lagrange multiplier ; Materials science ; Oscillations ; Partial differential equations ; Uniqueness ; Viability</subject><ispartof>Acta numerica, 2016-05, Vol.25, p.567-679</ispartof><rights>Cambridge University Press, 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-854c3cd00856011c6e1f189dfa38ee99d9130c87b4158b1c4627af8d9d6d83a73</citedby><cites>FETCH-LOGICAL-c431t-854c3cd00856011c6e1f189dfa38ee99d9130c87b4158b1c4627af8d9d6d83a73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0962492916000088/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27903,27904,55607</link.rule.ids></links><search><creatorcontrib>Fjordholm, Ulrik S.</creatorcontrib><creatorcontrib>Mishra, Siddhartha</creatorcontrib><creatorcontrib>Tadmor, Eitan</creatorcontrib><title>On the computation of measure-valued solutions</title><title>Acta numerica</title><addtitle>Acta Numerica</addtitle><description>A standard paradigm for the existence of solutions in fluid dynamics is based on the construction of sequences of approximate solutions or approximate minimizers. This approach faces serious obstacles, most notably in multi-dimensional problems, where the persistence of oscillations at ever finer scales prevents compactness. Indeed, these oscillations are an indication, consistent with recent theoretical results, of the possible lack of existence/uniqueness of solutions within the standard framework of integrable functions. It is in this context that Young measures – parametrized probability measures which can describe the limits of such oscillatory sequences – offer the more general paradigm of measure-valued solutions for these problems. We present viable numerical algorithms to compute approximate measure-valued solutions, based on the realization of approximate measures as laws of Monte Carlo sampled random fields. We prove convergence of these algorithms to measure-valued solutions for the equations of compressible and incompressible inviscid fluid dynamics, and present a large number of numerical experiments which provide convincing evidence for the viability of the new paradigm. We also discuss the use of these algorithms, and their extensions, in uncertainty quantification and contexts other than fluid dynamics, such as non-convex variational problems in materials science.</description><subject>Algorithms</subject><subject>Applied mathematics</subject><subject>Astrophysics</subject><subject>Boundary conditions</subject><subject>Colleges &amp; universities</subject><subject>Compressibility</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Eulers equations</subject><subject>Fluid flow</subject><subject>Incompressible flow</subject><subject>Lagrange multiplier</subject><subject>Materials science</subject><subject>Oscillations</subject><subject>Partial differential equations</subject><subject>Uniqueness</subject><subject>Viability</subject><issn>0962-4929</issn><issn>1474-0508</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kM1LxDAQxYMoWFf_AG8Fz11nmjQfR1n8goU9qOeSJql2aZuatIL_vS27B0Gcyxze-70ZHiHXCGsEFLcvoHjOVK6QwzxSnpAEmWAZFCBPSbLI2aKfk4sY9wCYC8YTst716fjhUuO7YRr12Pg-9XXaOR2n4LIv3U7OptG30yLFS3JW6za6q-NekbeH-9fNU7bdPT5v7raZYRTHTBbMUGPnPwoOiIY7rFEqW2sqnVPKKqRgpKgYFrJCw3gudC2tstxKqgVdkZtD7hD85-TiWO79FPr5ZIkKckAqAGYXHlwm-BiDq8shNJ0O3yVCudRS_qllZuiR0V0VGvvufkX_S_0AFntilA</recordid><startdate>20160501</startdate><enddate>20160501</enddate><creator>Fjordholm, Ulrik S.</creator><creator>Mishra, Siddhartha</creator><creator>Tadmor, Eitan</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20160501</creationdate><title>On the computation of measure-valued solutions</title><author>Fjordholm, Ulrik S. ; Mishra, Siddhartha ; Tadmor, Eitan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-854c3cd00856011c6e1f189dfa38ee99d9130c87b4158b1c4627af8d9d6d83a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Applied mathematics</topic><topic>Astrophysics</topic><topic>Boundary conditions</topic><topic>Colleges &amp; universities</topic><topic>Compressibility</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Eulers equations</topic><topic>Fluid flow</topic><topic>Incompressible flow</topic><topic>Lagrange multiplier</topic><topic>Materials science</topic><topic>Oscillations</topic><topic>Partial differential equations</topic><topic>Uniqueness</topic><topic>Viability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fjordholm, Ulrik S.</creatorcontrib><creatorcontrib>Mishra, Siddhartha</creatorcontrib><creatorcontrib>Tadmor, Eitan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Acta numerica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fjordholm, Ulrik S.</au><au>Mishra, Siddhartha</au><au>Tadmor, Eitan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the computation of measure-valued solutions</atitle><jtitle>Acta numerica</jtitle><addtitle>Acta Numerica</addtitle><date>2016-05-01</date><risdate>2016</risdate><volume>25</volume><spage>567</spage><epage>679</epage><pages>567-679</pages><issn>0962-4929</issn><eissn>1474-0508</eissn><abstract>A standard paradigm for the existence of solutions in fluid dynamics is based on the construction of sequences of approximate solutions or approximate minimizers. This approach faces serious obstacles, most notably in multi-dimensional problems, where the persistence of oscillations at ever finer scales prevents compactness. Indeed, these oscillations are an indication, consistent with recent theoretical results, of the possible lack of existence/uniqueness of solutions within the standard framework of integrable functions. It is in this context that Young measures – parametrized probability measures which can describe the limits of such oscillatory sequences – offer the more general paradigm of measure-valued solutions for these problems. We present viable numerical algorithms to compute approximate measure-valued solutions, based on the realization of approximate measures as laws of Monte Carlo sampled random fields. We prove convergence of these algorithms to measure-valued solutions for the equations of compressible and incompressible inviscid fluid dynamics, and present a large number of numerical experiments which provide convincing evidence for the viability of the new paradigm. We also discuss the use of these algorithms, and their extensions, in uncertainty quantification and contexts other than fluid dynamics, such as non-convex variational problems in materials science.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0962492916000088</doi><tpages>113</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0962-4929
ispartof Acta numerica, 2016-05, Vol.25, p.567-679
issn 0962-4929
1474-0508
language eng
recordid cdi_proquest_journals_1902013700
source Cambridge University Press Journals Complete
subjects Algorithms
Applied mathematics
Astrophysics
Boundary conditions
Colleges & universities
Compressibility
Computational fluid dynamics
Computer simulation
Eulers equations
Fluid flow
Incompressible flow
Lagrange multiplier
Materials science
Oscillations
Partial differential equations
Uniqueness
Viability
title On the computation of measure-valued solutions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T09%3A53%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20computation%20of%20measure-valued%20solutions&rft.jtitle=Acta%20numerica&rft.au=Fjordholm,%20Ulrik%20S.&rft.date=2016-05-01&rft.volume=25&rft.spage=567&rft.epage=679&rft.pages=567-679&rft.issn=0962-4929&rft.eissn=1474-0508&rft_id=info:doi/10.1017/S0962492916000088&rft_dat=%3Cproquest_cross%3E1902013700%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1902013700&rft_id=info:pmid/&rft_cupid=10_1017_S0962492916000088&rfr_iscdi=true