Calculation of shock wave propagation in water containing reactive gas bubbles
The entry of a shock wave from air into water containing reactive gas (stoichiometric acetylene–oxygen mixture) bubbles uniformly distributed over the volume of the liquid has been numerically investigated using equations describing two-phase compressible viscous reactive flow. It has been demonstra...
Gespeichert in:
Veröffentlicht in: | Russian journal of physical chemistry. B 2017-03, Vol.11 (2), p.261-271 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 271 |
---|---|
container_issue | 2 |
container_start_page | 261 |
container_title | Russian journal of physical chemistry. B |
container_volume | 11 |
creator | Avdeev, K. A. Aksenov, V. S. Borisov, A. A. Sevastopoleva, D. G. Tukhvatullina, R. R. Frolov, S. M. Frolov, F. S. Shamshin, I. O. Basara, B. Edelbauer, W. Pachler, K. |
description | The entry of a shock wave from air into water containing reactive gas (stoichiometric acetylene–oxygen mixture) bubbles uniformly distributed over the volume of the liquid has been numerically investigated using equations describing two-phase compressible viscous reactive flow. It has been demonstrated that a steady-state supersonic self-sustaining reaction front with rapid and complete fuel burnout in the leading shock wave can propagate in this bubbly medium. This reaction front can be treated as a detonation-like front or “bubble detonation.” The calculated and measured velocities of the bubble detonation wave have been compared at initial gas volume fraction of 2 to 6%. The observed and calculated data are in satisfactory qualitative and quantitative agreement. The structure of the bubble detonation wave has been numerically studied. In this wave, the gas volume fraction behind the leading front is approximately 3–4 times higher than in the pressure wave that propagates in water with air bubbles when the other initial conditions are the same. The bubble detonation wave can form after the penetration of the shock wave to a small depth (~300 mm) into the column of the bubbly medium. The model suggested here can be used to find optimum conditions for maximizing the efficiency of momentum transfer from the pressure wave to the bubbly medium in promising hydrojet pulse detonation engines. |
doi_str_mv | 10.1134/S1990793117020142 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1901780017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1901780017</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-ba42359f5cfcded73efe3ac32a3cba95151202342aaf8eaf284ac0fe9f52ac463</originalsourceid><addsrcrecordid>eNp1UMFKxDAQDaLguvoB3gKeq5mk3W6OsqgrLHpQz2WandSuNVmTVvHvzVIRQbzMDG_eezM8xk5BnAOo_OIBtBalVgClkAJyuccmOygrtVT7P7OCQ3YU40aImSy1mLC7BXZm6LBvvePe8vjszQv_wHfi2-C32Iyb1iWsp8CNdz22rnUND4SmbxOxwcjroa47isfswGIX6eS7T9nT9dXjYpmt7m9uF5erzCiY9VmNuVSFtoWxZk3rUpElhUZJVKZGXUABUkiVS0Q7J7RynqMRlpJCoslnasrORt_05NtAsa82fggunaxACyjnIpXEgpFlgo8xkK22oX3F8FmBqHaxVX9iSxo5amLiuobCL-d_RV_gLm_T</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1901780017</pqid></control><display><type>article</type><title>Calculation of shock wave propagation in water containing reactive gas bubbles</title><source>SpringerNature Journals</source><creator>Avdeev, K. A. ; Aksenov, V. S. ; Borisov, A. A. ; Sevastopoleva, D. G. ; Tukhvatullina, R. R. ; Frolov, S. M. ; Frolov, F. S. ; Shamshin, I. O. ; Basara, B. ; Edelbauer, W. ; Pachler, K.</creator><creatorcontrib>Avdeev, K. A. ; Aksenov, V. S. ; Borisov, A. A. ; Sevastopoleva, D. G. ; Tukhvatullina, R. R. ; Frolov, S. M. ; Frolov, F. S. ; Shamshin, I. O. ; Basara, B. ; Edelbauer, W. ; Pachler, K.</creatorcontrib><description>The entry of a shock wave from air into water containing reactive gas (stoichiometric acetylene–oxygen mixture) bubbles uniformly distributed over the volume of the liquid has been numerically investigated using equations describing two-phase compressible viscous reactive flow. It has been demonstrated that a steady-state supersonic self-sustaining reaction front with rapid and complete fuel burnout in the leading shock wave can propagate in this bubbly medium. This reaction front can be treated as a detonation-like front or “bubble detonation.” The calculated and measured velocities of the bubble detonation wave have been compared at initial gas volume fraction of 2 to 6%. The observed and calculated data are in satisfactory qualitative and quantitative agreement. The structure of the bubble detonation wave has been numerically studied. In this wave, the gas volume fraction behind the leading front is approximately 3–4 times higher than in the pressure wave that propagates in water with air bubbles when the other initial conditions are the same. The bubble detonation wave can form after the penetration of the shock wave to a small depth (~300 mm) into the column of the bubbly medium. The model suggested here can be used to find optimum conditions for maximizing the efficiency of momentum transfer from the pressure wave to the bubbly medium in promising hydrojet pulse detonation engines.</description><identifier>ISSN: 1990-7931</identifier><identifier>EISSN: 1990-7923</identifier><identifier>DOI: 10.1134/S1990793117020142</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Acetylene ; Air bubbles ; Bubbles ; Chemistry ; Chemistry and Materials Science ; Combustion ; Compressibility ; Concentration (composition) ; Detonation ; Explosion ; Fuel consumption ; Initial conditions ; Mathematical models ; Momentum transfer ; Optimization ; Physical Chemistry ; Pulsed detonation wave engines ; Qualitative analysis ; Shock wave propagation ; Shock Waves ; Simulation</subject><ispartof>Russian journal of physical chemistry. B, 2017-03, Vol.11 (2), p.261-271</ispartof><rights>Pleiades Publishing, Ltd. 2017</rights><rights>Copyright Springer Science & Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-ba42359f5cfcded73efe3ac32a3cba95151202342aaf8eaf284ac0fe9f52ac463</citedby><cites>FETCH-LOGICAL-c316t-ba42359f5cfcded73efe3ac32a3cba95151202342aaf8eaf284ac0fe9f52ac463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1990793117020142$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1990793117020142$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Avdeev, K. A.</creatorcontrib><creatorcontrib>Aksenov, V. S.</creatorcontrib><creatorcontrib>Borisov, A. A.</creatorcontrib><creatorcontrib>Sevastopoleva, D. G.</creatorcontrib><creatorcontrib>Tukhvatullina, R. R.</creatorcontrib><creatorcontrib>Frolov, S. M.</creatorcontrib><creatorcontrib>Frolov, F. S.</creatorcontrib><creatorcontrib>Shamshin, I. O.</creatorcontrib><creatorcontrib>Basara, B.</creatorcontrib><creatorcontrib>Edelbauer, W.</creatorcontrib><creatorcontrib>Pachler, K.</creatorcontrib><title>Calculation of shock wave propagation in water containing reactive gas bubbles</title><title>Russian journal of physical chemistry. B</title><addtitle>Russ. J. Phys. Chem. B</addtitle><description>The entry of a shock wave from air into water containing reactive gas (stoichiometric acetylene–oxygen mixture) bubbles uniformly distributed over the volume of the liquid has been numerically investigated using equations describing two-phase compressible viscous reactive flow. It has been demonstrated that a steady-state supersonic self-sustaining reaction front with rapid and complete fuel burnout in the leading shock wave can propagate in this bubbly medium. This reaction front can be treated as a detonation-like front or “bubble detonation.” The calculated and measured velocities of the bubble detonation wave have been compared at initial gas volume fraction of 2 to 6%. The observed and calculated data are in satisfactory qualitative and quantitative agreement. The structure of the bubble detonation wave has been numerically studied. In this wave, the gas volume fraction behind the leading front is approximately 3–4 times higher than in the pressure wave that propagates in water with air bubbles when the other initial conditions are the same. The bubble detonation wave can form after the penetration of the shock wave to a small depth (~300 mm) into the column of the bubbly medium. The model suggested here can be used to find optimum conditions for maximizing the efficiency of momentum transfer from the pressure wave to the bubbly medium in promising hydrojet pulse detonation engines.</description><subject>Acetylene</subject><subject>Air bubbles</subject><subject>Bubbles</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Combustion</subject><subject>Compressibility</subject><subject>Concentration (composition)</subject><subject>Detonation</subject><subject>Explosion</subject><subject>Fuel consumption</subject><subject>Initial conditions</subject><subject>Mathematical models</subject><subject>Momentum transfer</subject><subject>Optimization</subject><subject>Physical Chemistry</subject><subject>Pulsed detonation wave engines</subject><subject>Qualitative analysis</subject><subject>Shock wave propagation</subject><subject>Shock Waves</subject><subject>Simulation</subject><issn>1990-7931</issn><issn>1990-7923</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1UMFKxDAQDaLguvoB3gKeq5mk3W6OsqgrLHpQz2WandSuNVmTVvHvzVIRQbzMDG_eezM8xk5BnAOo_OIBtBalVgClkAJyuccmOygrtVT7P7OCQ3YU40aImSy1mLC7BXZm6LBvvePe8vjszQv_wHfi2-C32Iyb1iWsp8CNdz22rnUND4SmbxOxwcjroa47isfswGIX6eS7T9nT9dXjYpmt7m9uF5erzCiY9VmNuVSFtoWxZk3rUpElhUZJVKZGXUABUkiVS0Q7J7RynqMRlpJCoslnasrORt_05NtAsa82fggunaxACyjnIpXEgpFlgo8xkK22oX3F8FmBqHaxVX9iSxo5amLiuobCL-d_RV_gLm_T</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Avdeev, K. A.</creator><creator>Aksenov, V. S.</creator><creator>Borisov, A. A.</creator><creator>Sevastopoleva, D. G.</creator><creator>Tukhvatullina, R. R.</creator><creator>Frolov, S. M.</creator><creator>Frolov, F. S.</creator><creator>Shamshin, I. O.</creator><creator>Basara, B.</creator><creator>Edelbauer, W.</creator><creator>Pachler, K.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170301</creationdate><title>Calculation of shock wave propagation in water containing reactive gas bubbles</title><author>Avdeev, K. A. ; Aksenov, V. S. ; Borisov, A. A. ; Sevastopoleva, D. G. ; Tukhvatullina, R. R. ; Frolov, S. M. ; Frolov, F. S. ; Shamshin, I. O. ; Basara, B. ; Edelbauer, W. ; Pachler, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-ba42359f5cfcded73efe3ac32a3cba95151202342aaf8eaf284ac0fe9f52ac463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Acetylene</topic><topic>Air bubbles</topic><topic>Bubbles</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Combustion</topic><topic>Compressibility</topic><topic>Concentration (composition)</topic><topic>Detonation</topic><topic>Explosion</topic><topic>Fuel consumption</topic><topic>Initial conditions</topic><topic>Mathematical models</topic><topic>Momentum transfer</topic><topic>Optimization</topic><topic>Physical Chemistry</topic><topic>Pulsed detonation wave engines</topic><topic>Qualitative analysis</topic><topic>Shock wave propagation</topic><topic>Shock Waves</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Avdeev, K. A.</creatorcontrib><creatorcontrib>Aksenov, V. S.</creatorcontrib><creatorcontrib>Borisov, A. A.</creatorcontrib><creatorcontrib>Sevastopoleva, D. G.</creatorcontrib><creatorcontrib>Tukhvatullina, R. R.</creatorcontrib><creatorcontrib>Frolov, S. M.</creatorcontrib><creatorcontrib>Frolov, F. S.</creatorcontrib><creatorcontrib>Shamshin, I. O.</creatorcontrib><creatorcontrib>Basara, B.</creatorcontrib><creatorcontrib>Edelbauer, W.</creatorcontrib><creatorcontrib>Pachler, K.</creatorcontrib><collection>CrossRef</collection><jtitle>Russian journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Avdeev, K. A.</au><au>Aksenov, V. S.</au><au>Borisov, A. A.</au><au>Sevastopoleva, D. G.</au><au>Tukhvatullina, R. R.</au><au>Frolov, S. M.</au><au>Frolov, F. S.</au><au>Shamshin, I. O.</au><au>Basara, B.</au><au>Edelbauer, W.</au><au>Pachler, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Calculation of shock wave propagation in water containing reactive gas bubbles</atitle><jtitle>Russian journal of physical chemistry. B</jtitle><stitle>Russ. J. Phys. Chem. B</stitle><date>2017-03-01</date><risdate>2017</risdate><volume>11</volume><issue>2</issue><spage>261</spage><epage>271</epage><pages>261-271</pages><issn>1990-7931</issn><eissn>1990-7923</eissn><abstract>The entry of a shock wave from air into water containing reactive gas (stoichiometric acetylene–oxygen mixture) bubbles uniformly distributed over the volume of the liquid has been numerically investigated using equations describing two-phase compressible viscous reactive flow. It has been demonstrated that a steady-state supersonic self-sustaining reaction front with rapid and complete fuel burnout in the leading shock wave can propagate in this bubbly medium. This reaction front can be treated as a detonation-like front or “bubble detonation.” The calculated and measured velocities of the bubble detonation wave have been compared at initial gas volume fraction of 2 to 6%. The observed and calculated data are in satisfactory qualitative and quantitative agreement. The structure of the bubble detonation wave has been numerically studied. In this wave, the gas volume fraction behind the leading front is approximately 3–4 times higher than in the pressure wave that propagates in water with air bubbles when the other initial conditions are the same. The bubble detonation wave can form after the penetration of the shock wave to a small depth (~300 mm) into the column of the bubbly medium. The model suggested here can be used to find optimum conditions for maximizing the efficiency of momentum transfer from the pressure wave to the bubbly medium in promising hydrojet pulse detonation engines.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1990793117020142</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1990-7931 |
ispartof | Russian journal of physical chemistry. B, 2017-03, Vol.11 (2), p.261-271 |
issn | 1990-7931 1990-7923 |
language | eng |
recordid | cdi_proquest_journals_1901780017 |
source | SpringerNature Journals |
subjects | Acetylene Air bubbles Bubbles Chemistry Chemistry and Materials Science Combustion Compressibility Concentration (composition) Detonation Explosion Fuel consumption Initial conditions Mathematical models Momentum transfer Optimization Physical Chemistry Pulsed detonation wave engines Qualitative analysis Shock wave propagation Shock Waves Simulation |
title | Calculation of shock wave propagation in water containing reactive gas bubbles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T02%3A03%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Calculation%20of%20shock%20wave%20propagation%20in%20water%20containing%20reactive%20gas%20bubbles&rft.jtitle=Russian%20journal%20of%20physical%20chemistry.%20B&rft.au=Avdeev,%20K.%20A.&rft.date=2017-03-01&rft.volume=11&rft.issue=2&rft.spage=261&rft.epage=271&rft.pages=261-271&rft.issn=1990-7931&rft.eissn=1990-7923&rft_id=info:doi/10.1134/S1990793117020142&rft_dat=%3Cproquest_cross%3E1901780017%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1901780017&rft_id=info:pmid/&rfr_iscdi=true |