Calculation of shock wave propagation in water containing reactive gas bubbles

The entry of a shock wave from air into water containing reactive gas (stoichiometric acetylene–oxygen mixture) bubbles uniformly distributed over the volume of the liquid has been numerically investigated using equations describing two-phase compressible viscous reactive flow. It has been demonstra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Russian journal of physical chemistry. B 2017-03, Vol.11 (2), p.261-271
Hauptverfasser: Avdeev, K. A., Aksenov, V. S., Borisov, A. A., Sevastopoleva, D. G., Tukhvatullina, R. R., Frolov, S. M., Frolov, F. S., Shamshin, I. O., Basara, B., Edelbauer, W., Pachler, K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 271
container_issue 2
container_start_page 261
container_title Russian journal of physical chemistry. B
container_volume 11
creator Avdeev, K. A.
Aksenov, V. S.
Borisov, A. A.
Sevastopoleva, D. G.
Tukhvatullina, R. R.
Frolov, S. M.
Frolov, F. S.
Shamshin, I. O.
Basara, B.
Edelbauer, W.
Pachler, K.
description The entry of a shock wave from air into water containing reactive gas (stoichiometric acetylene–oxygen mixture) bubbles uniformly distributed over the volume of the liquid has been numerically investigated using equations describing two-phase compressible viscous reactive flow. It has been demonstrated that a steady-state supersonic self-sustaining reaction front with rapid and complete fuel burnout in the leading shock wave can propagate in this bubbly medium. This reaction front can be treated as a detonation-like front or “bubble detonation.” The calculated and measured velocities of the bubble detonation wave have been compared at initial gas volume fraction of 2 to 6%. The observed and calculated data are in satisfactory qualitative and quantitative agreement. The structure of the bubble detonation wave has been numerically studied. In this wave, the gas volume fraction behind the leading front is approximately 3–4 times higher than in the pressure wave that propagates in water with air bubbles when the other initial conditions are the same. The bubble detonation wave can form after the penetration of the shock wave to a small depth (~300 mm) into the column of the bubbly medium. The model suggested here can be used to find optimum conditions for maximizing the efficiency of momentum transfer from the pressure wave to the bubbly medium in promising hydrojet pulse detonation engines.
doi_str_mv 10.1134/S1990793117020142
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1901780017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1901780017</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-ba42359f5cfcded73efe3ac32a3cba95151202342aaf8eaf284ac0fe9f52ac463</originalsourceid><addsrcrecordid>eNp1UMFKxDAQDaLguvoB3gKeq5mk3W6OsqgrLHpQz2WandSuNVmTVvHvzVIRQbzMDG_eezM8xk5BnAOo_OIBtBalVgClkAJyuccmOygrtVT7P7OCQ3YU40aImSy1mLC7BXZm6LBvvePe8vjszQv_wHfi2-C32Iyb1iWsp8CNdz22rnUND4SmbxOxwcjroa47isfswGIX6eS7T9nT9dXjYpmt7m9uF5erzCiY9VmNuVSFtoWxZk3rUpElhUZJVKZGXUABUkiVS0Q7J7RynqMRlpJCoslnasrORt_05NtAsa82fggunaxACyjnIpXEgpFlgo8xkK22oX3F8FmBqHaxVX9iSxo5amLiuobCL-d_RV_gLm_T</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1901780017</pqid></control><display><type>article</type><title>Calculation of shock wave propagation in water containing reactive gas bubbles</title><source>SpringerNature Journals</source><creator>Avdeev, K. A. ; Aksenov, V. S. ; Borisov, A. A. ; Sevastopoleva, D. G. ; Tukhvatullina, R. R. ; Frolov, S. M. ; Frolov, F. S. ; Shamshin, I. O. ; Basara, B. ; Edelbauer, W. ; Pachler, K.</creator><creatorcontrib>Avdeev, K. A. ; Aksenov, V. S. ; Borisov, A. A. ; Sevastopoleva, D. G. ; Tukhvatullina, R. R. ; Frolov, S. M. ; Frolov, F. S. ; Shamshin, I. O. ; Basara, B. ; Edelbauer, W. ; Pachler, K.</creatorcontrib><description>The entry of a shock wave from air into water containing reactive gas (stoichiometric acetylene–oxygen mixture) bubbles uniformly distributed over the volume of the liquid has been numerically investigated using equations describing two-phase compressible viscous reactive flow. It has been demonstrated that a steady-state supersonic self-sustaining reaction front with rapid and complete fuel burnout in the leading shock wave can propagate in this bubbly medium. This reaction front can be treated as a detonation-like front or “bubble detonation.” The calculated and measured velocities of the bubble detonation wave have been compared at initial gas volume fraction of 2 to 6%. The observed and calculated data are in satisfactory qualitative and quantitative agreement. The structure of the bubble detonation wave has been numerically studied. In this wave, the gas volume fraction behind the leading front is approximately 3–4 times higher than in the pressure wave that propagates in water with air bubbles when the other initial conditions are the same. The bubble detonation wave can form after the penetration of the shock wave to a small depth (~300 mm) into the column of the bubbly medium. The model suggested here can be used to find optimum conditions for maximizing the efficiency of momentum transfer from the pressure wave to the bubbly medium in promising hydrojet pulse detonation engines.</description><identifier>ISSN: 1990-7931</identifier><identifier>EISSN: 1990-7923</identifier><identifier>DOI: 10.1134/S1990793117020142</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Acetylene ; Air bubbles ; Bubbles ; Chemistry ; Chemistry and Materials Science ; Combustion ; Compressibility ; Concentration (composition) ; Detonation ; Explosion ; Fuel consumption ; Initial conditions ; Mathematical models ; Momentum transfer ; Optimization ; Physical Chemistry ; Pulsed detonation wave engines ; Qualitative analysis ; Shock wave propagation ; Shock Waves ; Simulation</subject><ispartof>Russian journal of physical chemistry. B, 2017-03, Vol.11 (2), p.261-271</ispartof><rights>Pleiades Publishing, Ltd. 2017</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-ba42359f5cfcded73efe3ac32a3cba95151202342aaf8eaf284ac0fe9f52ac463</citedby><cites>FETCH-LOGICAL-c316t-ba42359f5cfcded73efe3ac32a3cba95151202342aaf8eaf284ac0fe9f52ac463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1990793117020142$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1990793117020142$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Avdeev, K. A.</creatorcontrib><creatorcontrib>Aksenov, V. S.</creatorcontrib><creatorcontrib>Borisov, A. A.</creatorcontrib><creatorcontrib>Sevastopoleva, D. G.</creatorcontrib><creatorcontrib>Tukhvatullina, R. R.</creatorcontrib><creatorcontrib>Frolov, S. M.</creatorcontrib><creatorcontrib>Frolov, F. S.</creatorcontrib><creatorcontrib>Shamshin, I. O.</creatorcontrib><creatorcontrib>Basara, B.</creatorcontrib><creatorcontrib>Edelbauer, W.</creatorcontrib><creatorcontrib>Pachler, K.</creatorcontrib><title>Calculation of shock wave propagation in water containing reactive gas bubbles</title><title>Russian journal of physical chemistry. B</title><addtitle>Russ. J. Phys. Chem. B</addtitle><description>The entry of a shock wave from air into water containing reactive gas (stoichiometric acetylene–oxygen mixture) bubbles uniformly distributed over the volume of the liquid has been numerically investigated using equations describing two-phase compressible viscous reactive flow. It has been demonstrated that a steady-state supersonic self-sustaining reaction front with rapid and complete fuel burnout in the leading shock wave can propagate in this bubbly medium. This reaction front can be treated as a detonation-like front or “bubble detonation.” The calculated and measured velocities of the bubble detonation wave have been compared at initial gas volume fraction of 2 to 6%. The observed and calculated data are in satisfactory qualitative and quantitative agreement. The structure of the bubble detonation wave has been numerically studied. In this wave, the gas volume fraction behind the leading front is approximately 3–4 times higher than in the pressure wave that propagates in water with air bubbles when the other initial conditions are the same. The bubble detonation wave can form after the penetration of the shock wave to a small depth (~300 mm) into the column of the bubbly medium. The model suggested here can be used to find optimum conditions for maximizing the efficiency of momentum transfer from the pressure wave to the bubbly medium in promising hydrojet pulse detonation engines.</description><subject>Acetylene</subject><subject>Air bubbles</subject><subject>Bubbles</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Combustion</subject><subject>Compressibility</subject><subject>Concentration (composition)</subject><subject>Detonation</subject><subject>Explosion</subject><subject>Fuel consumption</subject><subject>Initial conditions</subject><subject>Mathematical models</subject><subject>Momentum transfer</subject><subject>Optimization</subject><subject>Physical Chemistry</subject><subject>Pulsed detonation wave engines</subject><subject>Qualitative analysis</subject><subject>Shock wave propagation</subject><subject>Shock Waves</subject><subject>Simulation</subject><issn>1990-7931</issn><issn>1990-7923</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1UMFKxDAQDaLguvoB3gKeq5mk3W6OsqgrLHpQz2WandSuNVmTVvHvzVIRQbzMDG_eezM8xk5BnAOo_OIBtBalVgClkAJyuccmOygrtVT7P7OCQ3YU40aImSy1mLC7BXZm6LBvvePe8vjszQv_wHfi2-C32Iyb1iWsp8CNdz22rnUND4SmbxOxwcjroa47isfswGIX6eS7T9nT9dXjYpmt7m9uF5erzCiY9VmNuVSFtoWxZk3rUpElhUZJVKZGXUABUkiVS0Q7J7RynqMRlpJCoslnasrORt_05NtAsa82fggunaxACyjnIpXEgpFlgo8xkK22oX3F8FmBqHaxVX9iSxo5amLiuobCL-d_RV_gLm_T</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Avdeev, K. A.</creator><creator>Aksenov, V. S.</creator><creator>Borisov, A. A.</creator><creator>Sevastopoleva, D. G.</creator><creator>Tukhvatullina, R. R.</creator><creator>Frolov, S. M.</creator><creator>Frolov, F. S.</creator><creator>Shamshin, I. O.</creator><creator>Basara, B.</creator><creator>Edelbauer, W.</creator><creator>Pachler, K.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170301</creationdate><title>Calculation of shock wave propagation in water containing reactive gas bubbles</title><author>Avdeev, K. A. ; Aksenov, V. S. ; Borisov, A. A. ; Sevastopoleva, D. G. ; Tukhvatullina, R. R. ; Frolov, S. M. ; Frolov, F. S. ; Shamshin, I. O. ; Basara, B. ; Edelbauer, W. ; Pachler, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-ba42359f5cfcded73efe3ac32a3cba95151202342aaf8eaf284ac0fe9f52ac463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Acetylene</topic><topic>Air bubbles</topic><topic>Bubbles</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Combustion</topic><topic>Compressibility</topic><topic>Concentration (composition)</topic><topic>Detonation</topic><topic>Explosion</topic><topic>Fuel consumption</topic><topic>Initial conditions</topic><topic>Mathematical models</topic><topic>Momentum transfer</topic><topic>Optimization</topic><topic>Physical Chemistry</topic><topic>Pulsed detonation wave engines</topic><topic>Qualitative analysis</topic><topic>Shock wave propagation</topic><topic>Shock Waves</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Avdeev, K. A.</creatorcontrib><creatorcontrib>Aksenov, V. S.</creatorcontrib><creatorcontrib>Borisov, A. A.</creatorcontrib><creatorcontrib>Sevastopoleva, D. G.</creatorcontrib><creatorcontrib>Tukhvatullina, R. R.</creatorcontrib><creatorcontrib>Frolov, S. M.</creatorcontrib><creatorcontrib>Frolov, F. S.</creatorcontrib><creatorcontrib>Shamshin, I. O.</creatorcontrib><creatorcontrib>Basara, B.</creatorcontrib><creatorcontrib>Edelbauer, W.</creatorcontrib><creatorcontrib>Pachler, K.</creatorcontrib><collection>CrossRef</collection><jtitle>Russian journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Avdeev, K. A.</au><au>Aksenov, V. S.</au><au>Borisov, A. A.</au><au>Sevastopoleva, D. G.</au><au>Tukhvatullina, R. R.</au><au>Frolov, S. M.</au><au>Frolov, F. S.</au><au>Shamshin, I. O.</au><au>Basara, B.</au><au>Edelbauer, W.</au><au>Pachler, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Calculation of shock wave propagation in water containing reactive gas bubbles</atitle><jtitle>Russian journal of physical chemistry. B</jtitle><stitle>Russ. J. Phys. Chem. B</stitle><date>2017-03-01</date><risdate>2017</risdate><volume>11</volume><issue>2</issue><spage>261</spage><epage>271</epage><pages>261-271</pages><issn>1990-7931</issn><eissn>1990-7923</eissn><abstract>The entry of a shock wave from air into water containing reactive gas (stoichiometric acetylene–oxygen mixture) bubbles uniformly distributed over the volume of the liquid has been numerically investigated using equations describing two-phase compressible viscous reactive flow. It has been demonstrated that a steady-state supersonic self-sustaining reaction front with rapid and complete fuel burnout in the leading shock wave can propagate in this bubbly medium. This reaction front can be treated as a detonation-like front or “bubble detonation.” The calculated and measured velocities of the bubble detonation wave have been compared at initial gas volume fraction of 2 to 6%. The observed and calculated data are in satisfactory qualitative and quantitative agreement. The structure of the bubble detonation wave has been numerically studied. In this wave, the gas volume fraction behind the leading front is approximately 3–4 times higher than in the pressure wave that propagates in water with air bubbles when the other initial conditions are the same. The bubble detonation wave can form after the penetration of the shock wave to a small depth (~300 mm) into the column of the bubbly medium. The model suggested here can be used to find optimum conditions for maximizing the efficiency of momentum transfer from the pressure wave to the bubbly medium in promising hydrojet pulse detonation engines.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1990793117020142</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1990-7931
ispartof Russian journal of physical chemistry. B, 2017-03, Vol.11 (2), p.261-271
issn 1990-7931
1990-7923
language eng
recordid cdi_proquest_journals_1901780017
source SpringerNature Journals
subjects Acetylene
Air bubbles
Bubbles
Chemistry
Chemistry and Materials Science
Combustion
Compressibility
Concentration (composition)
Detonation
Explosion
Fuel consumption
Initial conditions
Mathematical models
Momentum transfer
Optimization
Physical Chemistry
Pulsed detonation wave engines
Qualitative analysis
Shock wave propagation
Shock Waves
Simulation
title Calculation of shock wave propagation in water containing reactive gas bubbles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T02%3A03%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Calculation%20of%20shock%20wave%20propagation%20in%20water%20containing%20reactive%20gas%20bubbles&rft.jtitle=Russian%20journal%20of%20physical%20chemistry.%20B&rft.au=Avdeev,%20K.%20A.&rft.date=2017-03-01&rft.volume=11&rft.issue=2&rft.spage=261&rft.epage=271&rft.pages=261-271&rft.issn=1990-7931&rft.eissn=1990-7923&rft_id=info:doi/10.1134/S1990793117020142&rft_dat=%3Cproquest_cross%3E1901780017%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1901780017&rft_id=info:pmid/&rfr_iscdi=true