Bohr Compactifications of Algebras and Structures

This paper provides a unifying framework for a range of categorical constructions characterised by universal mapping properties, within the realm of compactifications of discrete structures. Some classic examples fit within this broad picture: the Bohr compactification of an abelian group via Pontry...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied categorical structures 2017-06, Vol.25 (3), p.403-430
Hauptverfasser: Davey, B. A., Haviar, M., Priestley, H. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 430
container_issue 3
container_start_page 403
container_title Applied categorical structures
container_volume 25
creator Davey, B. A.
Haviar, M.
Priestley, H. A.
description This paper provides a unifying framework for a range of categorical constructions characterised by universal mapping properties, within the realm of compactifications of discrete structures. Some classic examples fit within this broad picture: the Bohr compactification of an abelian group via Pontryagin duality, the zero-dimensional Bohr compactification of a semilattice, and the Nachbin order-compactification of an ordered set. The notion of a natural extension functor is extended to suitable categories of structures and such a functor is shown to yield a reflection into an associated category of topological structures. Our principal results address reconciliation of the natural extension with the Bohr compactification or its zero-dimensional variant. In certain cases the natural extension functor and a Bohr compactification functor are the same; in others the functors have different codomains but may agree on all objects. Coincidence in the stronger sense occurs in the zero-dimensional setting precisely when the domain is a category of structures whose associated topological prevariety is standard. It occurs, in the weaker sense only, for the class of ordered sets and, as we show, also for infinitely many classes of ordered structures. Coincidence results aid understanding of Bohr-type compactifications, which are defined abstractly. Ideas from natural duality theory lead to an explicit description of the natural extension which is particularly amenable for any prevariety of algebras with a finite, dualisable, generator. Examples of such classes—often varieties—are plentiful and varied, and in many cases the associated topological prevariety is standard.
doi_str_mv 10.1007/s10485-016-9436-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1901768358</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1901768358</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-6f6ec4bcd87a589ae5fa75700369119456fbffae6a1c5cd5c47a252960c360613</originalsourceid><addsrcrecordid>eNp1kD9PwzAQRy0EEqXwAdgiMRvunPgcj6Xin1SJAZgtx7VLqjYudjLw7UkVBhamW977nfQYu0a4RQB1lxGqWnJA4roqicMJm6FUgmvQ8pTNQAvFRS3FObvIeQsAmjTMGN7Hz1Qs4_5gXd-G1tm-jV0uYigWu41vks2F7dbFW58G1w_J50t2Fuwu-6vfO2cfjw_vy2e-en16WS5W3JVIPadA3lWNW9fKylpbL4NVUgGUpBF1JSk0IVhPFp10a-kqZYUUmsCVBITlnN1Mu4cUvwafe7ONQ-rGlwY1oKK6lPVI4US5FHNOPphDavc2fRsEcyxjpjJmLGOOZQyMjpicPLLdxqc_y_9KP327ZOY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1901768358</pqid></control><display><type>article</type><title>Bohr Compactifications of Algebras and Structures</title><source>Springer Nature - Complete Springer Journals</source><creator>Davey, B. A. ; Haviar, M. ; Priestley, H. A.</creator><creatorcontrib>Davey, B. A. ; Haviar, M. ; Priestley, H. A.</creatorcontrib><description>This paper provides a unifying framework for a range of categorical constructions characterised by universal mapping properties, within the realm of compactifications of discrete structures. Some classic examples fit within this broad picture: the Bohr compactification of an abelian group via Pontryagin duality, the zero-dimensional Bohr compactification of a semilattice, and the Nachbin order-compactification of an ordered set. The notion of a natural extension functor is extended to suitable categories of structures and such a functor is shown to yield a reflection into an associated category of topological structures. Our principal results address reconciliation of the natural extension with the Bohr compactification or its zero-dimensional variant. In certain cases the natural extension functor and a Bohr compactification functor are the same; in others the functors have different codomains but may agree on all objects. Coincidence in the stronger sense occurs in the zero-dimensional setting precisely when the domain is a category of structures whose associated topological prevariety is standard. It occurs, in the weaker sense only, for the class of ordered sets and, as we show, also for infinitely many classes of ordered structures. Coincidence results aid understanding of Bohr-type compactifications, which are defined abstractly. Ideas from natural duality theory lead to an explicit description of the natural extension which is particularly amenable for any prevariety of algebras with a finite, dualisable, generator. Examples of such classes—often varieties—are plentiful and varied, and in many cases the associated topological prevariety is standard.</description><identifier>ISSN: 0927-2852</identifier><identifier>EISSN: 1572-9095</identifier><identifier>DOI: 10.1007/s10485-016-9436-0</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Convex and Discrete Geometry ; Geometry ; Mathematical Logic and Foundations ; Mathematics ; Mathematics and Statistics ; Object recognition ; Theory of Computation</subject><ispartof>Applied categorical structures, 2017-06, Vol.25 (3), p.403-430</ispartof><rights>Springer Science+Business Media Dordrecht 2016</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-6f6ec4bcd87a589ae5fa75700369119456fbffae6a1c5cd5c47a252960c360613</citedby><cites>FETCH-LOGICAL-c316t-6f6ec4bcd87a589ae5fa75700369119456fbffae6a1c5cd5c47a252960c360613</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10485-016-9436-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10485-016-9436-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Davey, B. A.</creatorcontrib><creatorcontrib>Haviar, M.</creatorcontrib><creatorcontrib>Priestley, H. A.</creatorcontrib><title>Bohr Compactifications of Algebras and Structures</title><title>Applied categorical structures</title><addtitle>Appl Categor Struct</addtitle><description>This paper provides a unifying framework for a range of categorical constructions characterised by universal mapping properties, within the realm of compactifications of discrete structures. Some classic examples fit within this broad picture: the Bohr compactification of an abelian group via Pontryagin duality, the zero-dimensional Bohr compactification of a semilattice, and the Nachbin order-compactification of an ordered set. The notion of a natural extension functor is extended to suitable categories of structures and such a functor is shown to yield a reflection into an associated category of topological structures. Our principal results address reconciliation of the natural extension with the Bohr compactification or its zero-dimensional variant. In certain cases the natural extension functor and a Bohr compactification functor are the same; in others the functors have different codomains but may agree on all objects. Coincidence in the stronger sense occurs in the zero-dimensional setting precisely when the domain is a category of structures whose associated topological prevariety is standard. It occurs, in the weaker sense only, for the class of ordered sets and, as we show, also for infinitely many classes of ordered structures. Coincidence results aid understanding of Bohr-type compactifications, which are defined abstractly. Ideas from natural duality theory lead to an explicit description of the natural extension which is particularly amenable for any prevariety of algebras with a finite, dualisable, generator. Examples of such classes—often varieties—are plentiful and varied, and in many cases the associated topological prevariety is standard.</description><subject>Convex and Discrete Geometry</subject><subject>Geometry</subject><subject>Mathematical Logic and Foundations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Object recognition</subject><subject>Theory of Computation</subject><issn>0927-2852</issn><issn>1572-9095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kD9PwzAQRy0EEqXwAdgiMRvunPgcj6Xin1SJAZgtx7VLqjYudjLw7UkVBhamW977nfQYu0a4RQB1lxGqWnJA4roqicMJm6FUgmvQ8pTNQAvFRS3FObvIeQsAmjTMGN7Hz1Qs4_5gXd-G1tm-jV0uYigWu41vks2F7dbFW58G1w_J50t2Fuwu-6vfO2cfjw_vy2e-en16WS5W3JVIPadA3lWNW9fKylpbL4NVUgGUpBF1JSk0IVhPFp10a-kqZYUUmsCVBITlnN1Mu4cUvwafe7ONQ-rGlwY1oKK6lPVI4US5FHNOPphDavc2fRsEcyxjpjJmLGOOZQyMjpicPLLdxqc_y_9KP327ZOY</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Davey, B. A.</creator><creator>Haviar, M.</creator><creator>Priestley, H. A.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170601</creationdate><title>Bohr Compactifications of Algebras and Structures</title><author>Davey, B. A. ; Haviar, M. ; Priestley, H. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-6f6ec4bcd87a589ae5fa75700369119456fbffae6a1c5cd5c47a252960c360613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Convex and Discrete Geometry</topic><topic>Geometry</topic><topic>Mathematical Logic and Foundations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Object recognition</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Davey, B. A.</creatorcontrib><creatorcontrib>Haviar, M.</creatorcontrib><creatorcontrib>Priestley, H. A.</creatorcontrib><collection>CrossRef</collection><jtitle>Applied categorical structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Davey, B. A.</au><au>Haviar, M.</au><au>Priestley, H. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bohr Compactifications of Algebras and Structures</atitle><jtitle>Applied categorical structures</jtitle><stitle>Appl Categor Struct</stitle><date>2017-06-01</date><risdate>2017</risdate><volume>25</volume><issue>3</issue><spage>403</spage><epage>430</epage><pages>403-430</pages><issn>0927-2852</issn><eissn>1572-9095</eissn><abstract>This paper provides a unifying framework for a range of categorical constructions characterised by universal mapping properties, within the realm of compactifications of discrete structures. Some classic examples fit within this broad picture: the Bohr compactification of an abelian group via Pontryagin duality, the zero-dimensional Bohr compactification of a semilattice, and the Nachbin order-compactification of an ordered set. The notion of a natural extension functor is extended to suitable categories of structures and such a functor is shown to yield a reflection into an associated category of topological structures. Our principal results address reconciliation of the natural extension with the Bohr compactification or its zero-dimensional variant. In certain cases the natural extension functor and a Bohr compactification functor are the same; in others the functors have different codomains but may agree on all objects. Coincidence in the stronger sense occurs in the zero-dimensional setting precisely when the domain is a category of structures whose associated topological prevariety is standard. It occurs, in the weaker sense only, for the class of ordered sets and, as we show, also for infinitely many classes of ordered structures. Coincidence results aid understanding of Bohr-type compactifications, which are defined abstractly. Ideas from natural duality theory lead to an explicit description of the natural extension which is particularly amenable for any prevariety of algebras with a finite, dualisable, generator. Examples of such classes—often varieties—are plentiful and varied, and in many cases the associated topological prevariety is standard.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10485-016-9436-0</doi><tpages>28</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0927-2852
ispartof Applied categorical structures, 2017-06, Vol.25 (3), p.403-430
issn 0927-2852
1572-9095
language eng
recordid cdi_proquest_journals_1901768358
source Springer Nature - Complete Springer Journals
subjects Convex and Discrete Geometry
Geometry
Mathematical Logic and Foundations
Mathematics
Mathematics and Statistics
Object recognition
Theory of Computation
title Bohr Compactifications of Algebras and Structures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T01%3A53%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bohr%20Compactifications%20of%20Algebras%20and%20Structures&rft.jtitle=Applied%20categorical%20structures&rft.au=Davey,%20B.%20A.&rft.date=2017-06-01&rft.volume=25&rft.issue=3&rft.spage=403&rft.epage=430&rft.pages=403-430&rft.issn=0927-2852&rft.eissn=1572-9095&rft_id=info:doi/10.1007/s10485-016-9436-0&rft_dat=%3Cproquest_cross%3E1901768358%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1901768358&rft_id=info:pmid/&rfr_iscdi=true