A Hybrid Swarm Optimization for Energy Efficient Clustering in Multi-hop Wireless Sensor Network
Wireless sensor network refers to distributed sets of embedded devices, all of them having processing units, wireless transmission interface and sensors or actuators. Data accumulation through effective network organizations helps nodes to be split into small sets known as clusters. This grouping of...
Gespeichert in:
Veröffentlicht in: | Wireless personal communications 2017-06, Vol.94 (4), p.2459-2471 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2471 |
---|---|
container_issue | 4 |
container_start_page | 2459 |
container_title | Wireless personal communications |
container_volume | 94 |
creator | Rajendra Prasad, D. Naganjaneyulu, P. V. Satya Prasad, K. |
description | Wireless sensor network refers to distributed sets of embedded devices, all of them having processing units, wireless transmission interface and sensors or actuators. Data accumulation through effective network organizations helps nodes to be split into small sets known as clusters. This grouping of sensor nodes as clusters is known as clustering. All clusters have leaders known as cluster heads (CHs). Clustering networks for minimizing total distance is an NP-hard issue. For a particular network topology, it is hard to discover optimum quantity of cluster-heads as well as their positions. The current article suggests a hybrid differential evolution with multi objective bee swam optimization (MOBSO-DE) for efficient clustering. CH selection process is based on communication energy and factors like residual energy and energy constraint metric. Simulation shows that the new MOBSO-DE method outperformed LEACH and MOBSO for packet delivery ratio and network lifetime. |
doi_str_mv | 10.1007/s11277-016-3562-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1901768301</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1901768301</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-12fb90b44ebe2cf2d096a4c13d629e021acc14057980bb978aafaf4f3267d3573</originalsourceid><addsrcrecordid>eNp1kLFOwzAQhi0EEqXwAGyWmA0-O4njsaoKRSowFASbcRK7uLRJsB1V5elJFQYWprvh__7TfQhdAr0GSsVNAGBCEAoZ4WnGSH6ERpCKfuHJ2zEaUckkyRiwU3QWwprSnpJshN4neL4vvKvwcqf9Fj-10W3dt46uqbFtPJ7Vxq_2eGatK52pI55uuhCNd_UKuxo_dJvoyEfT4lfnzcaEgJemDj34aOKu8Z_n6MTqTTAXv3OMXm5nz9M5WTzd3U8nC1LyPIsEmC0kLZLEFIaVllVUZjopgVcZk4Yy0GUJCU2FzGlRSJFrbbVNLGeZqHgq-BhdDb2tb746E6JaN52v-5MKJAWR5ZxCn4IhVfomBG-sar3bar9XQNVBpBpEql6kOohUec-wgQnt4Wvj_zT_C_0AZdd2UA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1901768301</pqid></control><display><type>article</type><title>A Hybrid Swarm Optimization for Energy Efficient Clustering in Multi-hop Wireless Sensor Network</title><source>SpringerLink Journals</source><creator>Rajendra Prasad, D. ; Naganjaneyulu, P. V. ; Satya Prasad, K.</creator><creatorcontrib>Rajendra Prasad, D. ; Naganjaneyulu, P. V. ; Satya Prasad, K.</creatorcontrib><description>Wireless sensor network refers to distributed sets of embedded devices, all of them having processing units, wireless transmission interface and sensors or actuators. Data accumulation through effective network organizations helps nodes to be split into small sets known as clusters. This grouping of sensor nodes as clusters is known as clustering. All clusters have leaders known as cluster heads (CHs). Clustering networks for minimizing total distance is an NP-hard issue. For a particular network topology, it is hard to discover optimum quantity of cluster-heads as well as their positions. The current article suggests a hybrid differential evolution with multi objective bee swam optimization (MOBSO-DE) for efficient clustering. CH selection process is based on communication energy and factors like residual energy and energy constraint metric. Simulation shows that the new MOBSO-DE method outperformed LEACH and MOBSO for packet delivery ratio and network lifetime.</description><identifier>ISSN: 0929-6212</identifier><identifier>EISSN: 1572-834X</identifier><identifier>DOI: 10.1007/s11277-016-3562-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Clustering ; Clusters ; Communications Engineering ; Computer Communication Networks ; Constraint modelling ; Electronic devices ; Embedded systems ; Engineering ; Networks ; Optimization ; Residual energy ; Sensors ; Signal,Image and Speech Processing ; Wireless networks ; Wireless sensor networks</subject><ispartof>Wireless personal communications, 2017-06, Vol.94 (4), p.2459-2471</ispartof><rights>Springer Science+Business Media New York 2016</rights><rights>Copyright Springer Science & Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-12fb90b44ebe2cf2d096a4c13d629e021acc14057980bb978aafaf4f3267d3573</citedby><cites>FETCH-LOGICAL-c386t-12fb90b44ebe2cf2d096a4c13d629e021acc14057980bb978aafaf4f3267d3573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11277-016-3562-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11277-016-3562-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Rajendra Prasad, D.</creatorcontrib><creatorcontrib>Naganjaneyulu, P. V.</creatorcontrib><creatorcontrib>Satya Prasad, K.</creatorcontrib><title>A Hybrid Swarm Optimization for Energy Efficient Clustering in Multi-hop Wireless Sensor Network</title><title>Wireless personal communications</title><addtitle>Wireless Pers Commun</addtitle><description>Wireless sensor network refers to distributed sets of embedded devices, all of them having processing units, wireless transmission interface and sensors or actuators. Data accumulation through effective network organizations helps nodes to be split into small sets known as clusters. This grouping of sensor nodes as clusters is known as clustering. All clusters have leaders known as cluster heads (CHs). Clustering networks for minimizing total distance is an NP-hard issue. For a particular network topology, it is hard to discover optimum quantity of cluster-heads as well as their positions. The current article suggests a hybrid differential evolution with multi objective bee swam optimization (MOBSO-DE) for efficient clustering. CH selection process is based on communication energy and factors like residual energy and energy constraint metric. Simulation shows that the new MOBSO-DE method outperformed LEACH and MOBSO for packet delivery ratio and network lifetime.</description><subject>Clustering</subject><subject>Clusters</subject><subject>Communications Engineering</subject><subject>Computer Communication Networks</subject><subject>Constraint modelling</subject><subject>Electronic devices</subject><subject>Embedded systems</subject><subject>Engineering</subject><subject>Networks</subject><subject>Optimization</subject><subject>Residual energy</subject><subject>Sensors</subject><subject>Signal,Image and Speech Processing</subject><subject>Wireless networks</subject><subject>Wireless sensor networks</subject><issn>0929-6212</issn><issn>1572-834X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kLFOwzAQhi0EEqXwAGyWmA0-O4njsaoKRSowFASbcRK7uLRJsB1V5elJFQYWprvh__7TfQhdAr0GSsVNAGBCEAoZ4WnGSH6ERpCKfuHJ2zEaUckkyRiwU3QWwprSnpJshN4neL4vvKvwcqf9Fj-10W3dt46uqbFtPJ7Vxq_2eGatK52pI55uuhCNd_UKuxo_dJvoyEfT4lfnzcaEgJemDj34aOKu8Z_n6MTqTTAXv3OMXm5nz9M5WTzd3U8nC1LyPIsEmC0kLZLEFIaVllVUZjopgVcZk4Yy0GUJCU2FzGlRSJFrbbVNLGeZqHgq-BhdDb2tb746E6JaN52v-5MKJAWR5ZxCn4IhVfomBG-sar3bar9XQNVBpBpEql6kOohUec-wgQnt4Wvj_zT_C_0AZdd2UA</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Rajendra Prasad, D.</creator><creator>Naganjaneyulu, P. V.</creator><creator>Satya Prasad, K.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170601</creationdate><title>A Hybrid Swarm Optimization for Energy Efficient Clustering in Multi-hop Wireless Sensor Network</title><author>Rajendra Prasad, D. ; Naganjaneyulu, P. V. ; Satya Prasad, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-12fb90b44ebe2cf2d096a4c13d629e021acc14057980bb978aafaf4f3267d3573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Clustering</topic><topic>Clusters</topic><topic>Communications Engineering</topic><topic>Computer Communication Networks</topic><topic>Constraint modelling</topic><topic>Electronic devices</topic><topic>Embedded systems</topic><topic>Engineering</topic><topic>Networks</topic><topic>Optimization</topic><topic>Residual energy</topic><topic>Sensors</topic><topic>Signal,Image and Speech Processing</topic><topic>Wireless networks</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rajendra Prasad, D.</creatorcontrib><creatorcontrib>Naganjaneyulu, P. V.</creatorcontrib><creatorcontrib>Satya Prasad, K.</creatorcontrib><collection>CrossRef</collection><jtitle>Wireless personal communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rajendra Prasad, D.</au><au>Naganjaneyulu, P. V.</au><au>Satya Prasad, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Hybrid Swarm Optimization for Energy Efficient Clustering in Multi-hop Wireless Sensor Network</atitle><jtitle>Wireless personal communications</jtitle><stitle>Wireless Pers Commun</stitle><date>2017-06-01</date><risdate>2017</risdate><volume>94</volume><issue>4</issue><spage>2459</spage><epage>2471</epage><pages>2459-2471</pages><issn>0929-6212</issn><eissn>1572-834X</eissn><abstract>Wireless sensor network refers to distributed sets of embedded devices, all of them having processing units, wireless transmission interface and sensors or actuators. Data accumulation through effective network organizations helps nodes to be split into small sets known as clusters. This grouping of sensor nodes as clusters is known as clustering. All clusters have leaders known as cluster heads (CHs). Clustering networks for minimizing total distance is an NP-hard issue. For a particular network topology, it is hard to discover optimum quantity of cluster-heads as well as their positions. The current article suggests a hybrid differential evolution with multi objective bee swam optimization (MOBSO-DE) for efficient clustering. CH selection process is based on communication energy and factors like residual energy and energy constraint metric. Simulation shows that the new MOBSO-DE method outperformed LEACH and MOBSO for packet delivery ratio and network lifetime.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11277-016-3562-8</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0929-6212 |
ispartof | Wireless personal communications, 2017-06, Vol.94 (4), p.2459-2471 |
issn | 0929-6212 1572-834X |
language | eng |
recordid | cdi_proquest_journals_1901768301 |
source | SpringerLink Journals |
subjects | Clustering Clusters Communications Engineering Computer Communication Networks Constraint modelling Electronic devices Embedded systems Engineering Networks Optimization Residual energy Sensors Signal,Image and Speech Processing Wireless networks Wireless sensor networks |
title | A Hybrid Swarm Optimization for Energy Efficient Clustering in Multi-hop Wireless Sensor Network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T06%3A29%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Hybrid%20Swarm%20Optimization%20for%20Energy%20Efficient%20Clustering%20in%20Multi-hop%20Wireless%20Sensor%20Network&rft.jtitle=Wireless%20personal%20communications&rft.au=Rajendra%20Prasad,%20D.&rft.date=2017-06-01&rft.volume=94&rft.issue=4&rft.spage=2459&rft.epage=2471&rft.pages=2459-2471&rft.issn=0929-6212&rft.eissn=1572-834X&rft_id=info:doi/10.1007/s11277-016-3562-8&rft_dat=%3Cproquest_cross%3E1901768301%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1901768301&rft_id=info:pmid/&rfr_iscdi=true |