Rapid Ultrasound‐Assisted Synthesis of Mesoporous Manganese Oxides for Low‐Concentration NO Elimination with Superior Water‐Resistance

Through a room‐temperature ultrasound‐assisted redox process, mesoporous manganese oxides were synthesized in short reaction times of 3–9 h. At room temperature, the resultant materials showed superior performance for the elimination of low‐concentration NO (10 ppm). Specifically, under humid condit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of inorganic chemistry 2017-05, Vol.2017 (19), p.2573-2579
Hauptverfasser: Du, Yanyan, He, Feng, Hua, Zile, Wu, Zhijian, Li, Mengli, Li, Jiusheng, Huang, Keke, Shi, Jianlin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2579
container_issue 19
container_start_page 2573
container_title European journal of inorganic chemistry
container_volume 2017
creator Du, Yanyan
He, Feng
Hua, Zile
Wu, Zhijian
Li, Mengli
Li, Jiusheng
Huang, Keke
Shi, Jianlin
description Through a room‐temperature ultrasound‐assisted redox process, mesoporous manganese oxides were synthesized in short reaction times of 3–9 h. At room temperature, the resultant materials showed superior performance for the elimination of low‐concentration NO (10 ppm). Specifically, under humid conditions (50–90 % relative humidity), 97 % NO removal efficiency was obtained over 110 h without deactivation. Synergetic effects between Mn2+, Mn3+, and Mn4+ ions were proposed to explain the oxidation of NO to NO2 on the surface of the catalyst. Density functional theory (DFT) calculations indicated that water molecules strengthen the chemisorption of NO2 on manganese oxide (001) owing to a much higher adsorption energy. As a result, the probability of the reaction between NO2 and H2O increases, and the formation of volatile nitric acid ensures that the catalytically active sites are always available. For the elimination of low‐concentration NO pollutant, mesoporous manganese oxides with superior water‐resistance properties are obtained by a room‐temperature ultrasonic‐assisted redox process. DFT calculations confirm that the strengthened chemisorption of NO2 on the (001) plane under humid conditions prevents the deactivation of the catalyst.
doi_str_mv 10.1002/ejic.201700008
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1901745808</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1901745808</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3178-b2f22550770b6ec03751254b53737be8ecf3f4b6eedf3efe7884db18384194643</originalsourceid><addsrcrecordid>eNqFkL9OwzAQhyMEEqWwMltiTrFjJ3HGKipQ1FKJUjFG-XOmrlI72IlKNx6AgWfkSXAVBCNezqf7fXfS53mXBI8IxsE1bGQ5CjCJsXv8yBsQnCQ-jnhw7P6MMp8kjJ96Z9ZuXIJiGg28j8e8kRVa1a3Jre5U9fX-ObZW2hYqtNyrdg2uQVqgOVjdaKM7i-a5eskVWECLN1mBRUIbNNM7x6ZalaDcslZqhR4WaFLLrVR9u5PtGi27Box0wHPegnHI4-FCmzvu3DsReW3h4qcOvdXN5Cm982eL22k6nvklJTH3i0AEQRjiOMZFBCWmcUiCkBUhjWlcAIdSUMHcCCpBQUDMOasKwilnzkDE6NC76vc2Rr92YNtsozuj3MmMJE4gCznmLjXqU6XR1hoQWWPkNjf7jODsYDw7GM9-jTsg6YGdrGH_Tzqb3E_TP_YbHkKKXQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1901745808</pqid></control><display><type>article</type><title>Rapid Ultrasound‐Assisted Synthesis of Mesoporous Manganese Oxides for Low‐Concentration NO Elimination with Superior Water‐Resistance</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Du, Yanyan ; He, Feng ; Hua, Zile ; Wu, Zhijian ; Li, Mengli ; Li, Jiusheng ; Huang, Keke ; Shi, Jianlin</creator><creatorcontrib>Du, Yanyan ; He, Feng ; Hua, Zile ; Wu, Zhijian ; Li, Mengli ; Li, Jiusheng ; Huang, Keke ; Shi, Jianlin</creatorcontrib><description>Through a room‐temperature ultrasound‐assisted redox process, mesoporous manganese oxides were synthesized in short reaction times of 3–9 h. At room temperature, the resultant materials showed superior performance for the elimination of low‐concentration NO (10 ppm). Specifically, under humid conditions (50–90 % relative humidity), 97 % NO removal efficiency was obtained over 110 h without deactivation. Synergetic effects between Mn2+, Mn3+, and Mn4+ ions were proposed to explain the oxidation of NO to NO2 on the surface of the catalyst. Density functional theory (DFT) calculations indicated that water molecules strengthen the chemisorption of NO2 on manganese oxide (001) owing to a much higher adsorption energy. As a result, the probability of the reaction between NO2 and H2O increases, and the formation of volatile nitric acid ensures that the catalytically active sites are always available. For the elimination of low‐concentration NO pollutant, mesoporous manganese oxides with superior water‐resistance properties are obtained by a room‐temperature ultrasonic‐assisted redox process. DFT calculations confirm that the strengthened chemisorption of NO2 on the (001) plane under humid conditions prevents the deactivation of the catalyst.</description><identifier>ISSN: 1434-1948</identifier><identifier>EISSN: 1099-0682</identifier><identifier>DOI: 10.1002/ejic.201700008</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Chemical synthesis ; Chemisorption ; Density functional calculations ; Density functional theory ; Inorganic chemistry ; Manganese ; Manganese ions ; Manganese oxides ; Mesoporous materials ; Nitric acid ; Nitrogen dioxide ; Nitrogen oxides ; Oxidation ; Relative humidity ; Room temperature ; Surface chemistry ; Ultrasonic imaging ; Ultrasound‐assisted synthesis ; Water chemistry ; Water resistance</subject><ispartof>European journal of inorganic chemistry, 2017-05, Vol.2017 (19), p.2573-2579</ispartof><rights>2017 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2017 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3178-b2f22550770b6ec03751254b53737be8ecf3f4b6eedf3efe7884db18384194643</citedby><cites>FETCH-LOGICAL-c3178-b2f22550770b6ec03751254b53737be8ecf3f4b6eedf3efe7884db18384194643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fejic.201700008$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fejic.201700008$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Du, Yanyan</creatorcontrib><creatorcontrib>He, Feng</creatorcontrib><creatorcontrib>Hua, Zile</creatorcontrib><creatorcontrib>Wu, Zhijian</creatorcontrib><creatorcontrib>Li, Mengli</creatorcontrib><creatorcontrib>Li, Jiusheng</creatorcontrib><creatorcontrib>Huang, Keke</creatorcontrib><creatorcontrib>Shi, Jianlin</creatorcontrib><title>Rapid Ultrasound‐Assisted Synthesis of Mesoporous Manganese Oxides for Low‐Concentration NO Elimination with Superior Water‐Resistance</title><title>European journal of inorganic chemistry</title><description>Through a room‐temperature ultrasound‐assisted redox process, mesoporous manganese oxides were synthesized in short reaction times of 3–9 h. At room temperature, the resultant materials showed superior performance for the elimination of low‐concentration NO (10 ppm). Specifically, under humid conditions (50–90 % relative humidity), 97 % NO removal efficiency was obtained over 110 h without deactivation. Synergetic effects between Mn2+, Mn3+, and Mn4+ ions were proposed to explain the oxidation of NO to NO2 on the surface of the catalyst. Density functional theory (DFT) calculations indicated that water molecules strengthen the chemisorption of NO2 on manganese oxide (001) owing to a much higher adsorption energy. As a result, the probability of the reaction between NO2 and H2O increases, and the formation of volatile nitric acid ensures that the catalytically active sites are always available. For the elimination of low‐concentration NO pollutant, mesoporous manganese oxides with superior water‐resistance properties are obtained by a room‐temperature ultrasonic‐assisted redox process. DFT calculations confirm that the strengthened chemisorption of NO2 on the (001) plane under humid conditions prevents the deactivation of the catalyst.</description><subject>Chemical synthesis</subject><subject>Chemisorption</subject><subject>Density functional calculations</subject><subject>Density functional theory</subject><subject>Inorganic chemistry</subject><subject>Manganese</subject><subject>Manganese ions</subject><subject>Manganese oxides</subject><subject>Mesoporous materials</subject><subject>Nitric acid</subject><subject>Nitrogen dioxide</subject><subject>Nitrogen oxides</subject><subject>Oxidation</subject><subject>Relative humidity</subject><subject>Room temperature</subject><subject>Surface chemistry</subject><subject>Ultrasonic imaging</subject><subject>Ultrasound‐assisted synthesis</subject><subject>Water chemistry</subject><subject>Water resistance</subject><issn>1434-1948</issn><issn>1099-0682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkL9OwzAQhyMEEqWwMltiTrFjJ3HGKipQ1FKJUjFG-XOmrlI72IlKNx6AgWfkSXAVBCNezqf7fXfS53mXBI8IxsE1bGQ5CjCJsXv8yBsQnCQ-jnhw7P6MMp8kjJ96Z9ZuXIJiGg28j8e8kRVa1a3Jre5U9fX-ObZW2hYqtNyrdg2uQVqgOVjdaKM7i-a5eskVWECLN1mBRUIbNNM7x6ZalaDcslZqhR4WaFLLrVR9u5PtGi27Box0wHPegnHI4-FCmzvu3DsReW3h4qcOvdXN5Cm982eL22k6nvklJTH3i0AEQRjiOMZFBCWmcUiCkBUhjWlcAIdSUMHcCCpBQUDMOasKwilnzkDE6NC76vc2Rr92YNtsozuj3MmMJE4gCznmLjXqU6XR1hoQWWPkNjf7jODsYDw7GM9-jTsg6YGdrGH_Tzqb3E_TP_YbHkKKXQ</recordid><startdate>20170518</startdate><enddate>20170518</enddate><creator>Du, Yanyan</creator><creator>He, Feng</creator><creator>Hua, Zile</creator><creator>Wu, Zhijian</creator><creator>Li, Mengli</creator><creator>Li, Jiusheng</creator><creator>Huang, Keke</creator><creator>Shi, Jianlin</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20170518</creationdate><title>Rapid Ultrasound‐Assisted Synthesis of Mesoporous Manganese Oxides for Low‐Concentration NO Elimination with Superior Water‐Resistance</title><author>Du, Yanyan ; He, Feng ; Hua, Zile ; Wu, Zhijian ; Li, Mengli ; Li, Jiusheng ; Huang, Keke ; Shi, Jianlin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3178-b2f22550770b6ec03751254b53737be8ecf3f4b6eedf3efe7884db18384194643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Chemical synthesis</topic><topic>Chemisorption</topic><topic>Density functional calculations</topic><topic>Density functional theory</topic><topic>Inorganic chemistry</topic><topic>Manganese</topic><topic>Manganese ions</topic><topic>Manganese oxides</topic><topic>Mesoporous materials</topic><topic>Nitric acid</topic><topic>Nitrogen dioxide</topic><topic>Nitrogen oxides</topic><topic>Oxidation</topic><topic>Relative humidity</topic><topic>Room temperature</topic><topic>Surface chemistry</topic><topic>Ultrasonic imaging</topic><topic>Ultrasound‐assisted synthesis</topic><topic>Water chemistry</topic><topic>Water resistance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Du, Yanyan</creatorcontrib><creatorcontrib>He, Feng</creatorcontrib><creatorcontrib>Hua, Zile</creatorcontrib><creatorcontrib>Wu, Zhijian</creatorcontrib><creatorcontrib>Li, Mengli</creatorcontrib><creatorcontrib>Li, Jiusheng</creatorcontrib><creatorcontrib>Huang, Keke</creatorcontrib><creatorcontrib>Shi, Jianlin</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>European journal of inorganic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Du, Yanyan</au><au>He, Feng</au><au>Hua, Zile</au><au>Wu, Zhijian</au><au>Li, Mengli</au><au>Li, Jiusheng</au><au>Huang, Keke</au><au>Shi, Jianlin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rapid Ultrasound‐Assisted Synthesis of Mesoporous Manganese Oxides for Low‐Concentration NO Elimination with Superior Water‐Resistance</atitle><jtitle>European journal of inorganic chemistry</jtitle><date>2017-05-18</date><risdate>2017</risdate><volume>2017</volume><issue>19</issue><spage>2573</spage><epage>2579</epage><pages>2573-2579</pages><issn>1434-1948</issn><eissn>1099-0682</eissn><abstract>Through a room‐temperature ultrasound‐assisted redox process, mesoporous manganese oxides were synthesized in short reaction times of 3–9 h. At room temperature, the resultant materials showed superior performance for the elimination of low‐concentration NO (10 ppm). Specifically, under humid conditions (50–90 % relative humidity), 97 % NO removal efficiency was obtained over 110 h without deactivation. Synergetic effects between Mn2+, Mn3+, and Mn4+ ions were proposed to explain the oxidation of NO to NO2 on the surface of the catalyst. Density functional theory (DFT) calculations indicated that water molecules strengthen the chemisorption of NO2 on manganese oxide (001) owing to a much higher adsorption energy. As a result, the probability of the reaction between NO2 and H2O increases, and the formation of volatile nitric acid ensures that the catalytically active sites are always available. For the elimination of low‐concentration NO pollutant, mesoporous manganese oxides with superior water‐resistance properties are obtained by a room‐temperature ultrasonic‐assisted redox process. DFT calculations confirm that the strengthened chemisorption of NO2 on the (001) plane under humid conditions prevents the deactivation of the catalyst.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ejic.201700008</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1434-1948
ispartof European journal of inorganic chemistry, 2017-05, Vol.2017 (19), p.2573-2579
issn 1434-1948
1099-0682
language eng
recordid cdi_proquest_journals_1901745808
source Wiley Online Library Journals Frontfile Complete
subjects Chemical synthesis
Chemisorption
Density functional calculations
Density functional theory
Inorganic chemistry
Manganese
Manganese ions
Manganese oxides
Mesoporous materials
Nitric acid
Nitrogen dioxide
Nitrogen oxides
Oxidation
Relative humidity
Room temperature
Surface chemistry
Ultrasonic imaging
Ultrasound‐assisted synthesis
Water chemistry
Water resistance
title Rapid Ultrasound‐Assisted Synthesis of Mesoporous Manganese Oxides for Low‐Concentration NO Elimination with Superior Water‐Resistance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T10%3A43%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rapid%20Ultrasound%E2%80%90Assisted%20Synthesis%20of%20Mesoporous%20Manganese%20Oxides%20for%20Low%E2%80%90Concentration%20NO%20Elimination%20with%20Superior%20Water%E2%80%90Resistance&rft.jtitle=European%20journal%20of%20inorganic%20chemistry&rft.au=Du,%20Yanyan&rft.date=2017-05-18&rft.volume=2017&rft.issue=19&rft.spage=2573&rft.epage=2579&rft.pages=2573-2579&rft.issn=1434-1948&rft.eissn=1099-0682&rft_id=info:doi/10.1002/ejic.201700008&rft_dat=%3Cproquest_cross%3E1901745808%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1901745808&rft_id=info:pmid/&rfr_iscdi=true