Rapid Ultrasound‐Assisted Synthesis of Mesoporous Manganese Oxides for Low‐Concentration NO Elimination with Superior Water‐Resistance
Through a room‐temperature ultrasound‐assisted redox process, mesoporous manganese oxides were synthesized in short reaction times of 3–9 h. At room temperature, the resultant materials showed superior performance for the elimination of low‐concentration NO (10 ppm). Specifically, under humid condit...
Gespeichert in:
Veröffentlicht in: | European journal of inorganic chemistry 2017-05, Vol.2017 (19), p.2573-2579 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2579 |
---|---|
container_issue | 19 |
container_start_page | 2573 |
container_title | European journal of inorganic chemistry |
container_volume | 2017 |
creator | Du, Yanyan He, Feng Hua, Zile Wu, Zhijian Li, Mengli Li, Jiusheng Huang, Keke Shi, Jianlin |
description | Through a room‐temperature ultrasound‐assisted redox process, mesoporous manganese oxides were synthesized in short reaction times of 3–9 h. At room temperature, the resultant materials showed superior performance for the elimination of low‐concentration NO (10 ppm). Specifically, under humid conditions (50–90 % relative humidity), 97 % NO removal efficiency was obtained over 110 h without deactivation. Synergetic effects between Mn2+, Mn3+, and Mn4+ ions were proposed to explain the oxidation of NO to NO2 on the surface of the catalyst. Density functional theory (DFT) calculations indicated that water molecules strengthen the chemisorption of NO2 on manganese oxide (001) owing to a much higher adsorption energy. As a result, the probability of the reaction between NO2 and H2O increases, and the formation of volatile nitric acid ensures that the catalytically active sites are always available.
For the elimination of low‐concentration NO pollutant, mesoporous manganese oxides with superior water‐resistance properties are obtained by a room‐temperature ultrasonic‐assisted redox process. DFT calculations confirm that the strengthened chemisorption of NO2 on the (001) plane under humid conditions prevents the deactivation of the catalyst. |
doi_str_mv | 10.1002/ejic.201700008 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1901745808</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1901745808</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3178-b2f22550770b6ec03751254b53737be8ecf3f4b6eedf3efe7884db18384194643</originalsourceid><addsrcrecordid>eNqFkL9OwzAQhyMEEqWwMltiTrFjJ3HGKipQ1FKJUjFG-XOmrlI72IlKNx6AgWfkSXAVBCNezqf7fXfS53mXBI8IxsE1bGQ5CjCJsXv8yBsQnCQ-jnhw7P6MMp8kjJ96Z9ZuXIJiGg28j8e8kRVa1a3Jre5U9fX-ObZW2hYqtNyrdg2uQVqgOVjdaKM7i-a5eskVWECLN1mBRUIbNNM7x6ZalaDcslZqhR4WaFLLrVR9u5PtGi27Box0wHPegnHI4-FCmzvu3DsReW3h4qcOvdXN5Cm982eL22k6nvklJTH3i0AEQRjiOMZFBCWmcUiCkBUhjWlcAIdSUMHcCCpBQUDMOasKwilnzkDE6NC76vc2Rr92YNtsozuj3MmMJE4gCznmLjXqU6XR1hoQWWPkNjf7jODsYDw7GM9-jTsg6YGdrGH_Tzqb3E_TP_YbHkKKXQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1901745808</pqid></control><display><type>article</type><title>Rapid Ultrasound‐Assisted Synthesis of Mesoporous Manganese Oxides for Low‐Concentration NO Elimination with Superior Water‐Resistance</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Du, Yanyan ; He, Feng ; Hua, Zile ; Wu, Zhijian ; Li, Mengli ; Li, Jiusheng ; Huang, Keke ; Shi, Jianlin</creator><creatorcontrib>Du, Yanyan ; He, Feng ; Hua, Zile ; Wu, Zhijian ; Li, Mengli ; Li, Jiusheng ; Huang, Keke ; Shi, Jianlin</creatorcontrib><description>Through a room‐temperature ultrasound‐assisted redox process, mesoporous manganese oxides were synthesized in short reaction times of 3–9 h. At room temperature, the resultant materials showed superior performance for the elimination of low‐concentration NO (10 ppm). Specifically, under humid conditions (50–90 % relative humidity), 97 % NO removal efficiency was obtained over 110 h without deactivation. Synergetic effects between Mn2+, Mn3+, and Mn4+ ions were proposed to explain the oxidation of NO to NO2 on the surface of the catalyst. Density functional theory (DFT) calculations indicated that water molecules strengthen the chemisorption of NO2 on manganese oxide (001) owing to a much higher adsorption energy. As a result, the probability of the reaction between NO2 and H2O increases, and the formation of volatile nitric acid ensures that the catalytically active sites are always available.
For the elimination of low‐concentration NO pollutant, mesoporous manganese oxides with superior water‐resistance properties are obtained by a room‐temperature ultrasonic‐assisted redox process. DFT calculations confirm that the strengthened chemisorption of NO2 on the (001) plane under humid conditions prevents the deactivation of the catalyst.</description><identifier>ISSN: 1434-1948</identifier><identifier>EISSN: 1099-0682</identifier><identifier>DOI: 10.1002/ejic.201700008</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Chemical synthesis ; Chemisorption ; Density functional calculations ; Density functional theory ; Inorganic chemistry ; Manganese ; Manganese ions ; Manganese oxides ; Mesoporous materials ; Nitric acid ; Nitrogen dioxide ; Nitrogen oxides ; Oxidation ; Relative humidity ; Room temperature ; Surface chemistry ; Ultrasonic imaging ; Ultrasound‐assisted synthesis ; Water chemistry ; Water resistance</subject><ispartof>European journal of inorganic chemistry, 2017-05, Vol.2017 (19), p.2573-2579</ispartof><rights>2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3178-b2f22550770b6ec03751254b53737be8ecf3f4b6eedf3efe7884db18384194643</citedby><cites>FETCH-LOGICAL-c3178-b2f22550770b6ec03751254b53737be8ecf3f4b6eedf3efe7884db18384194643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fejic.201700008$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fejic.201700008$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Du, Yanyan</creatorcontrib><creatorcontrib>He, Feng</creatorcontrib><creatorcontrib>Hua, Zile</creatorcontrib><creatorcontrib>Wu, Zhijian</creatorcontrib><creatorcontrib>Li, Mengli</creatorcontrib><creatorcontrib>Li, Jiusheng</creatorcontrib><creatorcontrib>Huang, Keke</creatorcontrib><creatorcontrib>Shi, Jianlin</creatorcontrib><title>Rapid Ultrasound‐Assisted Synthesis of Mesoporous Manganese Oxides for Low‐Concentration NO Elimination with Superior Water‐Resistance</title><title>European journal of inorganic chemistry</title><description>Through a room‐temperature ultrasound‐assisted redox process, mesoporous manganese oxides were synthesized in short reaction times of 3–9 h. At room temperature, the resultant materials showed superior performance for the elimination of low‐concentration NO (10 ppm). Specifically, under humid conditions (50–90 % relative humidity), 97 % NO removal efficiency was obtained over 110 h without deactivation. Synergetic effects between Mn2+, Mn3+, and Mn4+ ions were proposed to explain the oxidation of NO to NO2 on the surface of the catalyst. Density functional theory (DFT) calculations indicated that water molecules strengthen the chemisorption of NO2 on manganese oxide (001) owing to a much higher adsorption energy. As a result, the probability of the reaction between NO2 and H2O increases, and the formation of volatile nitric acid ensures that the catalytically active sites are always available.
For the elimination of low‐concentration NO pollutant, mesoporous manganese oxides with superior water‐resistance properties are obtained by a room‐temperature ultrasonic‐assisted redox process. DFT calculations confirm that the strengthened chemisorption of NO2 on the (001) plane under humid conditions prevents the deactivation of the catalyst.</description><subject>Chemical synthesis</subject><subject>Chemisorption</subject><subject>Density functional calculations</subject><subject>Density functional theory</subject><subject>Inorganic chemistry</subject><subject>Manganese</subject><subject>Manganese ions</subject><subject>Manganese oxides</subject><subject>Mesoporous materials</subject><subject>Nitric acid</subject><subject>Nitrogen dioxide</subject><subject>Nitrogen oxides</subject><subject>Oxidation</subject><subject>Relative humidity</subject><subject>Room temperature</subject><subject>Surface chemistry</subject><subject>Ultrasonic imaging</subject><subject>Ultrasound‐assisted synthesis</subject><subject>Water chemistry</subject><subject>Water resistance</subject><issn>1434-1948</issn><issn>1099-0682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkL9OwzAQhyMEEqWwMltiTrFjJ3HGKipQ1FKJUjFG-XOmrlI72IlKNx6AgWfkSXAVBCNezqf7fXfS53mXBI8IxsE1bGQ5CjCJsXv8yBsQnCQ-jnhw7P6MMp8kjJ96Z9ZuXIJiGg28j8e8kRVa1a3Jre5U9fX-ObZW2hYqtNyrdg2uQVqgOVjdaKM7i-a5eskVWECLN1mBRUIbNNM7x6ZalaDcslZqhR4WaFLLrVR9u5PtGi27Box0wHPegnHI4-FCmzvu3DsReW3h4qcOvdXN5Cm982eL22k6nvklJTH3i0AEQRjiOMZFBCWmcUiCkBUhjWlcAIdSUMHcCCpBQUDMOasKwilnzkDE6NC76vc2Rr92YNtsozuj3MmMJE4gCznmLjXqU6XR1hoQWWPkNjf7jODsYDw7GM9-jTsg6YGdrGH_Tzqb3E_TP_YbHkKKXQ</recordid><startdate>20170518</startdate><enddate>20170518</enddate><creator>Du, Yanyan</creator><creator>He, Feng</creator><creator>Hua, Zile</creator><creator>Wu, Zhijian</creator><creator>Li, Mengli</creator><creator>Li, Jiusheng</creator><creator>Huang, Keke</creator><creator>Shi, Jianlin</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20170518</creationdate><title>Rapid Ultrasound‐Assisted Synthesis of Mesoporous Manganese Oxides for Low‐Concentration NO Elimination with Superior Water‐Resistance</title><author>Du, Yanyan ; He, Feng ; Hua, Zile ; Wu, Zhijian ; Li, Mengli ; Li, Jiusheng ; Huang, Keke ; Shi, Jianlin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3178-b2f22550770b6ec03751254b53737be8ecf3f4b6eedf3efe7884db18384194643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Chemical synthesis</topic><topic>Chemisorption</topic><topic>Density functional calculations</topic><topic>Density functional theory</topic><topic>Inorganic chemistry</topic><topic>Manganese</topic><topic>Manganese ions</topic><topic>Manganese oxides</topic><topic>Mesoporous materials</topic><topic>Nitric acid</topic><topic>Nitrogen dioxide</topic><topic>Nitrogen oxides</topic><topic>Oxidation</topic><topic>Relative humidity</topic><topic>Room temperature</topic><topic>Surface chemistry</topic><topic>Ultrasonic imaging</topic><topic>Ultrasound‐assisted synthesis</topic><topic>Water chemistry</topic><topic>Water resistance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Du, Yanyan</creatorcontrib><creatorcontrib>He, Feng</creatorcontrib><creatorcontrib>Hua, Zile</creatorcontrib><creatorcontrib>Wu, Zhijian</creatorcontrib><creatorcontrib>Li, Mengli</creatorcontrib><creatorcontrib>Li, Jiusheng</creatorcontrib><creatorcontrib>Huang, Keke</creatorcontrib><creatorcontrib>Shi, Jianlin</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>European journal of inorganic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Du, Yanyan</au><au>He, Feng</au><au>Hua, Zile</au><au>Wu, Zhijian</au><au>Li, Mengli</au><au>Li, Jiusheng</au><au>Huang, Keke</au><au>Shi, Jianlin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rapid Ultrasound‐Assisted Synthesis of Mesoporous Manganese Oxides for Low‐Concentration NO Elimination with Superior Water‐Resistance</atitle><jtitle>European journal of inorganic chemistry</jtitle><date>2017-05-18</date><risdate>2017</risdate><volume>2017</volume><issue>19</issue><spage>2573</spage><epage>2579</epage><pages>2573-2579</pages><issn>1434-1948</issn><eissn>1099-0682</eissn><abstract>Through a room‐temperature ultrasound‐assisted redox process, mesoporous manganese oxides were synthesized in short reaction times of 3–9 h. At room temperature, the resultant materials showed superior performance for the elimination of low‐concentration NO (10 ppm). Specifically, under humid conditions (50–90 % relative humidity), 97 % NO removal efficiency was obtained over 110 h without deactivation. Synergetic effects between Mn2+, Mn3+, and Mn4+ ions were proposed to explain the oxidation of NO to NO2 on the surface of the catalyst. Density functional theory (DFT) calculations indicated that water molecules strengthen the chemisorption of NO2 on manganese oxide (001) owing to a much higher adsorption energy. As a result, the probability of the reaction between NO2 and H2O increases, and the formation of volatile nitric acid ensures that the catalytically active sites are always available.
For the elimination of low‐concentration NO pollutant, mesoporous manganese oxides with superior water‐resistance properties are obtained by a room‐temperature ultrasonic‐assisted redox process. DFT calculations confirm that the strengthened chemisorption of NO2 on the (001) plane under humid conditions prevents the deactivation of the catalyst.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ejic.201700008</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1434-1948 |
ispartof | European journal of inorganic chemistry, 2017-05, Vol.2017 (19), p.2573-2579 |
issn | 1434-1948 1099-0682 |
language | eng |
recordid | cdi_proquest_journals_1901745808 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Chemical synthesis Chemisorption Density functional calculations Density functional theory Inorganic chemistry Manganese Manganese ions Manganese oxides Mesoporous materials Nitric acid Nitrogen dioxide Nitrogen oxides Oxidation Relative humidity Room temperature Surface chemistry Ultrasonic imaging Ultrasound‐assisted synthesis Water chemistry Water resistance |
title | Rapid Ultrasound‐Assisted Synthesis of Mesoporous Manganese Oxides for Low‐Concentration NO Elimination with Superior Water‐Resistance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T10%3A43%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rapid%20Ultrasound%E2%80%90Assisted%20Synthesis%20of%20Mesoporous%20Manganese%20Oxides%20for%20Low%E2%80%90Concentration%20NO%20Elimination%20with%20Superior%20Water%E2%80%90Resistance&rft.jtitle=European%20journal%20of%20inorganic%20chemistry&rft.au=Du,%20Yanyan&rft.date=2017-05-18&rft.volume=2017&rft.issue=19&rft.spage=2573&rft.epage=2579&rft.pages=2573-2579&rft.issn=1434-1948&rft.eissn=1099-0682&rft_id=info:doi/10.1002/ejic.201700008&rft_dat=%3Cproquest_cross%3E1901745808%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1901745808&rft_id=info:pmid/&rfr_iscdi=true |