Intelligent Energy Profiling for Decentralized Fault Diagnosis of Automated Production Systems

The proliferation of energy management systems leads to new potentials of data acquisition that can deliver improved machine information through intelligent linking. In addition to energy controlling, the newly gotten database creates further use cases for advanced purposes. This paper presents an e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mechanics and materials 2015-11, Vol.805, p.73-78
Hauptverfasser: Franke, Jörg, Fleischmann, Hans, Kohl, Johannes
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 78
container_issue
container_start_page 73
container_title Applied mechanics and materials
container_volume 805
creator Franke, Jörg
Fleischmann, Hans
Kohl, Johannes
description The proliferation of energy management systems leads to new potentials of data acquisition that can deliver improved machine information through intelligent linking. In addition to energy controlling, the newly gotten database creates further use cases for advanced purposes. This paper presents an exemplary application of a diagnostic scenario for industrial robots. For this objective, data fusion of energy data and operating logs is necessary to obtain detailed knowledge of the behavior of a production system. Hereby, an online measurement system will be described, which helps to uncover inefficiencies in production systems.
doi_str_mv 10.4028/www.scientific.net/AMM.805.73
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1901734928</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1901734928</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1983-9fb84a02375565e47f729147c358e30ad40df13a1353fdbef06cf82667d675103</originalsourceid><addsrcrecordid>eNqNkFtLBCEYhqUDdPwPQnQ5k46OOhcRS9sJioLqNjFHN2NWSx2W7ddnbVCXXX0X74nvAeAQo5qiRhwtFos6aWd8dtbp2pt8NLm5qQVqa07WwDZmrKk4Fc062O-4IIgI0jLKmo1vDVUdIWwL7KT0ihCjmIpt8HTlsxkGNyut8MybOFvCuxisG5yfQRsinBpdtKgG92F6eK7GIcOpUzMfkkswWDgZc5irXMQS7EedXfDwfpmymac9sGnVkMz-z90Fj-dnD6eX1fXtxdXp5LrSuBOk6uyzoAo1hLctaw3lljcdplyTVhiCVE9RbzFRmLTE9s_GIqataBjjPeMtRmQXHKx632J4H03K8jWM0ZdJiTuEOaFdI4rreOXSMaQUjZVv0c1VXEqM5BdiWRDLX8SyIJYFsSyIJSclf7LKFxy-_Kdf_sz8q-ETqWuLIQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1901734928</pqid></control><display><type>article</type><title>Intelligent Energy Profiling for Decentralized Fault Diagnosis of Automated Production Systems</title><source>Scientific.net Journals</source><creator>Franke, Jörg ; Fleischmann, Hans ; Kohl, Johannes</creator><creatorcontrib>Franke, Jörg ; Fleischmann, Hans ; Kohl, Johannes</creatorcontrib><description>The proliferation of energy management systems leads to new potentials of data acquisition that can deliver improved machine information through intelligent linking. In addition to energy controlling, the newly gotten database creates further use cases for advanced purposes. This paper presents an exemplary application of a diagnostic scenario for industrial robots. For this objective, data fusion of energy data and operating logs is necessary to obtain detailed knowledge of the behavior of a production system. Hereby, an online measurement system will be described, which helps to uncover inefficiencies in production systems.</description><identifier>ISSN: 1660-9336</identifier><identifier>ISSN: 1662-7482</identifier><identifier>ISBN: 9783038356462</identifier><identifier>ISBN: 3038356468</identifier><identifier>EISSN: 1662-7482</identifier><identifier>DOI: 10.4028/www.scientific.net/AMM.805.73</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><subject>Data integration ; Energy management systems ; Fault diagnosis ; Industrial robots</subject><ispartof>Applied mechanics and materials, 2015-11, Vol.805, p.73-78</ispartof><rights>2015 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Nov 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1983-9fb84a02375565e47f729147c358e30ad40df13a1353fdbef06cf82667d675103</citedby><cites>FETCH-LOGICAL-c1983-9fb84a02375565e47f729147c358e30ad40df13a1353fdbef06cf82667d675103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/4226?width=600</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Franke, Jörg</creatorcontrib><creatorcontrib>Fleischmann, Hans</creatorcontrib><creatorcontrib>Kohl, Johannes</creatorcontrib><title>Intelligent Energy Profiling for Decentralized Fault Diagnosis of Automated Production Systems</title><title>Applied mechanics and materials</title><description>The proliferation of energy management systems leads to new potentials of data acquisition that can deliver improved machine information through intelligent linking. In addition to energy controlling, the newly gotten database creates further use cases for advanced purposes. This paper presents an exemplary application of a diagnostic scenario for industrial robots. For this objective, data fusion of energy data and operating logs is necessary to obtain detailed knowledge of the behavior of a production system. Hereby, an online measurement system will be described, which helps to uncover inefficiencies in production systems.</description><subject>Data integration</subject><subject>Energy management systems</subject><subject>Fault diagnosis</subject><subject>Industrial robots</subject><issn>1660-9336</issn><issn>1662-7482</issn><issn>1662-7482</issn><isbn>9783038356462</isbn><isbn>3038356468</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNkFtLBCEYhqUDdPwPQnQ5k46OOhcRS9sJioLqNjFHN2NWSx2W7ddnbVCXXX0X74nvAeAQo5qiRhwtFos6aWd8dtbp2pt8NLm5qQVqa07WwDZmrKk4Fc062O-4IIgI0jLKmo1vDVUdIWwL7KT0ihCjmIpt8HTlsxkGNyut8MybOFvCuxisG5yfQRsinBpdtKgG92F6eK7GIcOpUzMfkkswWDgZc5irXMQS7EedXfDwfpmymac9sGnVkMz-z90Fj-dnD6eX1fXtxdXp5LrSuBOk6uyzoAo1hLctaw3lljcdplyTVhiCVE9RbzFRmLTE9s_GIqataBjjPeMtRmQXHKx632J4H03K8jWM0ZdJiTuEOaFdI4rreOXSMaQUjZVv0c1VXEqM5BdiWRDLX8SyIJYFsSyIJSclf7LKFxy-_Kdf_sz8q-ETqWuLIQ</recordid><startdate>20151101</startdate><enddate>20151101</enddate><creator>Franke, Jörg</creator><creator>Fleischmann, Hans</creator><creator>Kohl, Johannes</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20151101</creationdate><title>Intelligent Energy Profiling for Decentralized Fault Diagnosis of Automated Production Systems</title><author>Franke, Jörg ; Fleischmann, Hans ; Kohl, Johannes</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1983-9fb84a02375565e47f729147c358e30ad40df13a1353fdbef06cf82667d675103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Data integration</topic><topic>Energy management systems</topic><topic>Fault diagnosis</topic><topic>Industrial robots</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Franke, Jörg</creatorcontrib><creatorcontrib>Fleischmann, Hans</creatorcontrib><creatorcontrib>Kohl, Johannes</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Applied mechanics and materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Franke, Jörg</au><au>Fleischmann, Hans</au><au>Kohl, Johannes</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intelligent Energy Profiling for Decentralized Fault Diagnosis of Automated Production Systems</atitle><jtitle>Applied mechanics and materials</jtitle><date>2015-11-01</date><risdate>2015</risdate><volume>805</volume><spage>73</spage><epage>78</epage><pages>73-78</pages><issn>1660-9336</issn><issn>1662-7482</issn><eissn>1662-7482</eissn><isbn>9783038356462</isbn><isbn>3038356468</isbn><abstract>The proliferation of energy management systems leads to new potentials of data acquisition that can deliver improved machine information through intelligent linking. In addition to energy controlling, the newly gotten database creates further use cases for advanced purposes. This paper presents an exemplary application of a diagnostic scenario for industrial robots. For this objective, data fusion of energy data and operating logs is necessary to obtain detailed knowledge of the behavior of a production system. Hereby, an online measurement system will be described, which helps to uncover inefficiencies in production systems.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/AMM.805.73</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1660-9336
ispartof Applied mechanics and materials, 2015-11, Vol.805, p.73-78
issn 1660-9336
1662-7482
1662-7482
language eng
recordid cdi_proquest_journals_1901734928
source Scientific.net Journals
subjects Data integration
Energy management systems
Fault diagnosis
Industrial robots
title Intelligent Energy Profiling for Decentralized Fault Diagnosis of Automated Production Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T04%3A10%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intelligent%20Energy%20Profiling%20for%20Decentralized%20Fault%20Diagnosis%20of%20Automated%20Production%20Systems&rft.jtitle=Applied%20mechanics%20and%20materials&rft.au=Franke,%20J%C3%B6rg&rft.date=2015-11-01&rft.volume=805&rft.spage=73&rft.epage=78&rft.pages=73-78&rft.issn=1660-9336&rft.eissn=1662-7482&rft.isbn=9783038356462&rft.isbn_list=3038356468&rft_id=info:doi/10.4028/www.scientific.net/AMM.805.73&rft_dat=%3Cproquest_cross%3E1901734928%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1901734928&rft_id=info:pmid/&rfr_iscdi=true