Intelligent Energy Profiling for Decentralized Fault Diagnosis of Automated Production Systems
The proliferation of energy management systems leads to new potentials of data acquisition that can deliver improved machine information through intelligent linking. In addition to energy controlling, the newly gotten database creates further use cases for advanced purposes. This paper presents an e...
Gespeichert in:
Veröffentlicht in: | Applied mechanics and materials 2015-11, Vol.805, p.73-78 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 78 |
---|---|
container_issue | |
container_start_page | 73 |
container_title | Applied mechanics and materials |
container_volume | 805 |
creator | Franke, Jörg Fleischmann, Hans Kohl, Johannes |
description | The proliferation of energy management systems leads to new potentials of data acquisition that can deliver improved machine information through intelligent linking. In addition to energy controlling, the newly gotten database creates further use cases for advanced purposes. This paper presents an exemplary application of a diagnostic scenario for industrial robots. For this objective, data fusion of energy data and operating logs is necessary to obtain detailed knowledge of the behavior of a production system. Hereby, an online measurement system will be described, which helps to uncover inefficiencies in production systems. |
doi_str_mv | 10.4028/www.scientific.net/AMM.805.73 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1901734928</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1901734928</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1983-9fb84a02375565e47f729147c358e30ad40df13a1353fdbef06cf82667d675103</originalsourceid><addsrcrecordid>eNqNkFtLBCEYhqUDdPwPQnQ5k46OOhcRS9sJioLqNjFHN2NWSx2W7ddnbVCXXX0X74nvAeAQo5qiRhwtFos6aWd8dtbp2pt8NLm5qQVqa07WwDZmrKk4Fc062O-4IIgI0jLKmo1vDVUdIWwL7KT0ihCjmIpt8HTlsxkGNyut8MybOFvCuxisG5yfQRsinBpdtKgG92F6eK7GIcOpUzMfkkswWDgZc5irXMQS7EedXfDwfpmymac9sGnVkMz-z90Fj-dnD6eX1fXtxdXp5LrSuBOk6uyzoAo1hLctaw3lljcdplyTVhiCVE9RbzFRmLTE9s_GIqataBjjPeMtRmQXHKx632J4H03K8jWM0ZdJiTuEOaFdI4rreOXSMaQUjZVv0c1VXEqM5BdiWRDLX8SyIJYFsSyIJSclf7LKFxy-_Kdf_sz8q-ETqWuLIQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1901734928</pqid></control><display><type>article</type><title>Intelligent Energy Profiling for Decentralized Fault Diagnosis of Automated Production Systems</title><source>Scientific.net Journals</source><creator>Franke, Jörg ; Fleischmann, Hans ; Kohl, Johannes</creator><creatorcontrib>Franke, Jörg ; Fleischmann, Hans ; Kohl, Johannes</creatorcontrib><description>The proliferation of energy management systems leads to new potentials of data acquisition that can deliver improved machine information through intelligent linking. In addition to energy controlling, the newly gotten database creates further use cases for advanced purposes. This paper presents an exemplary application of a diagnostic scenario for industrial robots. For this objective, data fusion of energy data and operating logs is necessary to obtain detailed knowledge of the behavior of a production system. Hereby, an online measurement system will be described, which helps to uncover inefficiencies in production systems.</description><identifier>ISSN: 1660-9336</identifier><identifier>ISSN: 1662-7482</identifier><identifier>ISBN: 9783038356462</identifier><identifier>ISBN: 3038356468</identifier><identifier>EISSN: 1662-7482</identifier><identifier>DOI: 10.4028/www.scientific.net/AMM.805.73</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><subject>Data integration ; Energy management systems ; Fault diagnosis ; Industrial robots</subject><ispartof>Applied mechanics and materials, 2015-11, Vol.805, p.73-78</ispartof><rights>2015 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Nov 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1983-9fb84a02375565e47f729147c358e30ad40df13a1353fdbef06cf82667d675103</citedby><cites>FETCH-LOGICAL-c1983-9fb84a02375565e47f729147c358e30ad40df13a1353fdbef06cf82667d675103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/4226?width=600</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Franke, Jörg</creatorcontrib><creatorcontrib>Fleischmann, Hans</creatorcontrib><creatorcontrib>Kohl, Johannes</creatorcontrib><title>Intelligent Energy Profiling for Decentralized Fault Diagnosis of Automated Production Systems</title><title>Applied mechanics and materials</title><description>The proliferation of energy management systems leads to new potentials of data acquisition that can deliver improved machine information through intelligent linking. In addition to energy controlling, the newly gotten database creates further use cases for advanced purposes. This paper presents an exemplary application of a diagnostic scenario for industrial robots. For this objective, data fusion of energy data and operating logs is necessary to obtain detailed knowledge of the behavior of a production system. Hereby, an online measurement system will be described, which helps to uncover inefficiencies in production systems.</description><subject>Data integration</subject><subject>Energy management systems</subject><subject>Fault diagnosis</subject><subject>Industrial robots</subject><issn>1660-9336</issn><issn>1662-7482</issn><issn>1662-7482</issn><isbn>9783038356462</isbn><isbn>3038356468</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNkFtLBCEYhqUDdPwPQnQ5k46OOhcRS9sJioLqNjFHN2NWSx2W7ddnbVCXXX0X74nvAeAQo5qiRhwtFos6aWd8dtbp2pt8NLm5qQVqa07WwDZmrKk4Fc062O-4IIgI0jLKmo1vDVUdIWwL7KT0ihCjmIpt8HTlsxkGNyut8MybOFvCuxisG5yfQRsinBpdtKgG92F6eK7GIcOpUzMfkkswWDgZc5irXMQS7EedXfDwfpmymac9sGnVkMz-z90Fj-dnD6eX1fXtxdXp5LrSuBOk6uyzoAo1hLctaw3lljcdplyTVhiCVE9RbzFRmLTE9s_GIqataBjjPeMtRmQXHKx632J4H03K8jWM0ZdJiTuEOaFdI4rreOXSMaQUjZVv0c1VXEqM5BdiWRDLX8SyIJYFsSyIJSclf7LKFxy-_Kdf_sz8q-ETqWuLIQ</recordid><startdate>20151101</startdate><enddate>20151101</enddate><creator>Franke, Jörg</creator><creator>Fleischmann, Hans</creator><creator>Kohl, Johannes</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20151101</creationdate><title>Intelligent Energy Profiling for Decentralized Fault Diagnosis of Automated Production Systems</title><author>Franke, Jörg ; Fleischmann, Hans ; Kohl, Johannes</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1983-9fb84a02375565e47f729147c358e30ad40df13a1353fdbef06cf82667d675103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Data integration</topic><topic>Energy management systems</topic><topic>Fault diagnosis</topic><topic>Industrial robots</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Franke, Jörg</creatorcontrib><creatorcontrib>Fleischmann, Hans</creatorcontrib><creatorcontrib>Kohl, Johannes</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Applied mechanics and materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Franke, Jörg</au><au>Fleischmann, Hans</au><au>Kohl, Johannes</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intelligent Energy Profiling for Decentralized Fault Diagnosis of Automated Production Systems</atitle><jtitle>Applied mechanics and materials</jtitle><date>2015-11-01</date><risdate>2015</risdate><volume>805</volume><spage>73</spage><epage>78</epage><pages>73-78</pages><issn>1660-9336</issn><issn>1662-7482</issn><eissn>1662-7482</eissn><isbn>9783038356462</isbn><isbn>3038356468</isbn><abstract>The proliferation of energy management systems leads to new potentials of data acquisition that can deliver improved machine information through intelligent linking. In addition to energy controlling, the newly gotten database creates further use cases for advanced purposes. This paper presents an exemplary application of a diagnostic scenario for industrial robots. For this objective, data fusion of energy data and operating logs is necessary to obtain detailed knowledge of the behavior of a production system. Hereby, an online measurement system will be described, which helps to uncover inefficiencies in production systems.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/AMM.805.73</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1660-9336 |
ispartof | Applied mechanics and materials, 2015-11, Vol.805, p.73-78 |
issn | 1660-9336 1662-7482 1662-7482 |
language | eng |
recordid | cdi_proquest_journals_1901734928 |
source | Scientific.net Journals |
subjects | Data integration Energy management systems Fault diagnosis Industrial robots |
title | Intelligent Energy Profiling for Decentralized Fault Diagnosis of Automated Production Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T04%3A10%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intelligent%20Energy%20Profiling%20for%20Decentralized%20Fault%20Diagnosis%20of%20Automated%20Production%20Systems&rft.jtitle=Applied%20mechanics%20and%20materials&rft.au=Franke,%20J%C3%B6rg&rft.date=2015-11-01&rft.volume=805&rft.spage=73&rft.epage=78&rft.pages=73-78&rft.issn=1660-9336&rft.eissn=1662-7482&rft.isbn=9783038356462&rft.isbn_list=3038356468&rft_id=info:doi/10.4028/www.scientific.net/AMM.805.73&rft_dat=%3Cproquest_cross%3E1901734928%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1901734928&rft_id=info:pmid/&rfr_iscdi=true |