A10.08 Detailed analysis of the effect of cryopreservation on the viability and cytokine release of human synovial tissue

Background and objectivesHuman synovial tissue derived from joint surgery of osteoarthritis (OA) and rheumatoid arthritis (RA) patients is valuable material for studying fundamental research questions. It would be ideal to store and collect all this valuable tissue for later use. In this study cryop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of the rheumatic diseases 2016-02, Vol.75 (Suppl 1), p.A75-A76
Hauptverfasser: de Vries, M, Broeren, MGA, Bennink, MB, van Lent, PLEM, van der Kraan, PM, Koenders, MI, Thurlings, RM, van de Loo, FAJ
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background and objectivesHuman synovial tissue derived from joint surgery of osteoarthritis (OA) and rheumatoid arthritis (RA) patients is valuable material for studying fundamental research questions. It would be ideal to store and collect all this valuable tissue for later use. In this study cryopreservation solutions are validated for their capability to preserve the tissue as freshly obtained material.Materials and methodsHuman synovial OA tissue was derived (n = 4), with informed consent, from joint surgery and frozen as 3 mm biopsies. Cryosections were made to prove synovial origin. Biopsies were cryopreserved by slow freezing using several cryoprotectant (CPA) solutions (Cryostor CS2, Cryostor CS10, CryoSFM, Biofreeze and standard freezing medium containing 10% DMSO and 10% FCS). For slow freezing an isopropanol container was used assuring a temperature decrease of 1°C/min. Frozen tissues were stored for 7 days in liquid nitrogen. Thawing was performed at 37°C, followed by quick removal of the CPA solution.ResultsTo asses general viability after thawing the tissue was cultured overnight. Both the ATP and XTT assays showed viability rates up to 90% of non frozen tissue. However, decreased viability (60%) was observed with higher concentrations of DMSO (CS10 and standard media, XTT) and the complete absence of DMSO (Biofreeze, ATP). Next, the RNA integrity number (RIN) was determined 24 h after thawing to ensure the RNA is suitable for gene array experiments. A high RIN (˜8) was found in all conditions. Stress genes (CASP3, HSPA1A, HSP27, MCL1, BAX, CD95, p53) described to be up/downregulated after cryopreservation did not show deviations from the non frozen tissue in the four donors tested. However, studying OA characteristic gene expression (TIMP3, CCL18, MMP9) showed that the Biofreeze medium had most changes (up/down) compared to non frozen tissue. Furthermore, we showed that the tissue was able to respond to inflammatory stimuli (Pam3Cys/LPS) as cytokine secretion (IL1b, TNFa, IL6, IL8) was highly upregulated.ConclusionEvaluation by two viability assays, stress – and disease characteristic gene expression, and cytokine secretion showed that during a short-time culture of human synovial tissue the disease characteristic phenotype was unchanged after cryopreservation.
ISSN:0003-4967
1468-2060
DOI:10.1136/annrheumdis-2016-209124.180