Evaporation of water: evaporation rate and collective effects

We study the evaporation rate from single drops as well as collections of drops on a solid substrate, both experimentally and theoretically. For a single isolated drop of water, in general the evaporative flux is limited by diffusion of water through the air, leading to an evaporation rate that is p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2016-07, Vol.798, p.774-786
Hauptverfasser: Carrier, Odile, Shahidzadeh-Bonn, Noushine, Zargar, Rojman, Aytouna, Mounir, Habibi, Mehdi, Eggers, Jens, Bonn, Daniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 786
container_issue
container_start_page 774
container_title Journal of fluid mechanics
container_volume 798
creator Carrier, Odile
Shahidzadeh-Bonn, Noushine
Zargar, Rojman
Aytouna, Mounir
Habibi, Mehdi
Eggers, Jens
Bonn, Daniel
description We study the evaporation rate from single drops as well as collections of drops on a solid substrate, both experimentally and theoretically. For a single isolated drop of water, in general the evaporative flux is limited by diffusion of water through the air, leading to an evaporation rate that is proportional to the linear dimension of the drop. Here, we test the limitations of this scaling law for several small drops and for very large drops. We find that both for simple arrangements of drops, as well as for complex drop size distributions found in sprays, cooperative effects between drops are significant. For large drops, we find that the onset of convection introduces a length scale of approximately 20 mm in radius, below which linear scaling is found. Above this length scale, the evaporation rate is proportional to the surface area.
doi_str_mv 10.1017/jfm.2016.356
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1901661816</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2016_356</cupid><sourcerecordid>1901661816</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-53ee074a83010aa0d19d141c8aca19bb2b132183bfe53c265eb18bdd1d085d293</originalsourceid><addsrcrecordid>eNptkE1Lw0AQhhdRsFZv_oCAVxNndpNNIniQUj-g4EXPy37MSkrb1N204r_vlvbQg6cZhmfeYR7GbhEKBKwf5n5ZcEBZiEqesRGWss1rWVbnbATAeY7I4ZJdxTgHQAFtPWJP061e90EPXb_Kep_96oHCY0Yn01Qo0yuX2X6xIDt0W8rI-9TFa3bh9SLSzbGO2dfL9HPyls8-Xt8nz7PcihKGvBJEUJe6EYCgNThsHZZoG201tsZwg4JjI4ynSlguKzLYGOfQQVM53ooxuzvkrkP_s6E4qHm_Cat0UmGbHpbYoEzU_YGyoY8xkFfr0C11-FMIai9IJUFqL0glQQkvjrhemtC5bzpJ_W9hB-auZ14</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1901661816</pqid></control><display><type>article</type><title>Evaporation of water: evaporation rate and collective effects</title><source>Cambridge University Press Journals Complete</source><creator>Carrier, Odile ; Shahidzadeh-Bonn, Noushine ; Zargar, Rojman ; Aytouna, Mounir ; Habibi, Mehdi ; Eggers, Jens ; Bonn, Daniel</creator><creatorcontrib>Carrier, Odile ; Shahidzadeh-Bonn, Noushine ; Zargar, Rojman ; Aytouna, Mounir ; Habibi, Mehdi ; Eggers, Jens ; Bonn, Daniel</creatorcontrib><description>We study the evaporation rate from single drops as well as collections of drops on a solid substrate, both experimentally and theoretically. For a single isolated drop of water, in general the evaporative flux is limited by diffusion of water through the air, leading to an evaporation rate that is proportional to the linear dimension of the drop. Here, we test the limitations of this scaling law for several small drops and for very large drops. We find that both for simple arrangements of drops, as well as for complex drop size distributions found in sprays, cooperative effects between drops are significant. For large drops, we find that the onset of convection introduces a length scale of approximately 20 mm in radius, below which linear scaling is found. Above this length scale, the evaporation rate is proportional to the surface area.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2016.356</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Collections ; Contact angle ; Convection ; Diffusion rate ; Drop size ; Dye dispersion ; Evaporation ; Evaporation rate ; Experiments ; Scaling ; Scaling laws ; Sprayers ; Sprays</subject><ispartof>Journal of fluid mechanics, 2016-07, Vol.798, p.774-786</ispartof><rights>2016 Cambridge University Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-53ee074a83010aa0d19d141c8aca19bb2b132183bfe53c265eb18bdd1d085d293</citedby><cites>FETCH-LOGICAL-c340t-53ee074a83010aa0d19d141c8aca19bb2b132183bfe53c265eb18bdd1d085d293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112016003566/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids></links><search><creatorcontrib>Carrier, Odile</creatorcontrib><creatorcontrib>Shahidzadeh-Bonn, Noushine</creatorcontrib><creatorcontrib>Zargar, Rojman</creatorcontrib><creatorcontrib>Aytouna, Mounir</creatorcontrib><creatorcontrib>Habibi, Mehdi</creatorcontrib><creatorcontrib>Eggers, Jens</creatorcontrib><creatorcontrib>Bonn, Daniel</creatorcontrib><title>Evaporation of water: evaporation rate and collective effects</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>We study the evaporation rate from single drops as well as collections of drops on a solid substrate, both experimentally and theoretically. For a single isolated drop of water, in general the evaporative flux is limited by diffusion of water through the air, leading to an evaporation rate that is proportional to the linear dimension of the drop. Here, we test the limitations of this scaling law for several small drops and for very large drops. We find that both for simple arrangements of drops, as well as for complex drop size distributions found in sprays, cooperative effects between drops are significant. For large drops, we find that the onset of convection introduces a length scale of approximately 20 mm in radius, below which linear scaling is found. Above this length scale, the evaporation rate is proportional to the surface area.</description><subject>Collections</subject><subject>Contact angle</subject><subject>Convection</subject><subject>Diffusion rate</subject><subject>Drop size</subject><subject>Dye dispersion</subject><subject>Evaporation</subject><subject>Evaporation rate</subject><subject>Experiments</subject><subject>Scaling</subject><subject>Scaling laws</subject><subject>Sprayers</subject><subject>Sprays</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkE1Lw0AQhhdRsFZv_oCAVxNndpNNIniQUj-g4EXPy37MSkrb1N204r_vlvbQg6cZhmfeYR7GbhEKBKwf5n5ZcEBZiEqesRGWss1rWVbnbATAeY7I4ZJdxTgHQAFtPWJP061e90EPXb_Kep_96oHCY0Yn01Qo0yuX2X6xIDt0W8rI-9TFa3bh9SLSzbGO2dfL9HPyls8-Xt8nz7PcihKGvBJEUJe6EYCgNThsHZZoG201tsZwg4JjI4ynSlguKzLYGOfQQVM53ooxuzvkrkP_s6E4qHm_Cat0UmGbHpbYoEzU_YGyoY8xkFfr0C11-FMIai9IJUFqL0glQQkvjrhemtC5bzpJ_W9hB-auZ14</recordid><startdate>20160710</startdate><enddate>20160710</enddate><creator>Carrier, Odile</creator><creator>Shahidzadeh-Bonn, Noushine</creator><creator>Zargar, Rojman</creator><creator>Aytouna, Mounir</creator><creator>Habibi, Mehdi</creator><creator>Eggers, Jens</creator><creator>Bonn, Daniel</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20160710</creationdate><title>Evaporation of water: evaporation rate and collective effects</title><author>Carrier, Odile ; Shahidzadeh-Bonn, Noushine ; Zargar, Rojman ; Aytouna, Mounir ; Habibi, Mehdi ; Eggers, Jens ; Bonn, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-53ee074a83010aa0d19d141c8aca19bb2b132183bfe53c265eb18bdd1d085d293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Collections</topic><topic>Contact angle</topic><topic>Convection</topic><topic>Diffusion rate</topic><topic>Drop size</topic><topic>Dye dispersion</topic><topic>Evaporation</topic><topic>Evaporation rate</topic><topic>Experiments</topic><topic>Scaling</topic><topic>Scaling laws</topic><topic>Sprayers</topic><topic>Sprays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carrier, Odile</creatorcontrib><creatorcontrib>Shahidzadeh-Bonn, Noushine</creatorcontrib><creatorcontrib>Zargar, Rojman</creatorcontrib><creatorcontrib>Aytouna, Mounir</creatorcontrib><creatorcontrib>Habibi, Mehdi</creatorcontrib><creatorcontrib>Eggers, Jens</creatorcontrib><creatorcontrib>Bonn, Daniel</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carrier, Odile</au><au>Shahidzadeh-Bonn, Noushine</au><au>Zargar, Rojman</au><au>Aytouna, Mounir</au><au>Habibi, Mehdi</au><au>Eggers, Jens</au><au>Bonn, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaporation of water: evaporation rate and collective effects</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2016-07-10</date><risdate>2016</risdate><volume>798</volume><spage>774</spage><epage>786</epage><pages>774-786</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>We study the evaporation rate from single drops as well as collections of drops on a solid substrate, both experimentally and theoretically. For a single isolated drop of water, in general the evaporative flux is limited by diffusion of water through the air, leading to an evaporation rate that is proportional to the linear dimension of the drop. Here, we test the limitations of this scaling law for several small drops and for very large drops. We find that both for simple arrangements of drops, as well as for complex drop size distributions found in sprays, cooperative effects between drops are significant. For large drops, we find that the onset of convection introduces a length scale of approximately 20 mm in radius, below which linear scaling is found. Above this length scale, the evaporation rate is proportional to the surface area.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2016.356</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2016-07, Vol.798, p.774-786
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_journals_1901661816
source Cambridge University Press Journals Complete
subjects Collections
Contact angle
Convection
Diffusion rate
Drop size
Dye dispersion
Evaporation
Evaporation rate
Experiments
Scaling
Scaling laws
Sprayers
Sprays
title Evaporation of water: evaporation rate and collective effects
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T22%3A52%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaporation%20of%20water:%20evaporation%20rate%20and%20collective%20effects&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Carrier,%20Odile&rft.date=2016-07-10&rft.volume=798&rft.spage=774&rft.epage=786&rft.pages=774-786&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2016.356&rft_dat=%3Cproquest_cross%3E1901661816%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1901661816&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2016_356&rfr_iscdi=true