On the effects of vertical offset and core structure in streamwise-oriented vortex–wing interactions

This article explores the three-dimensional flow structure of a streamwise-oriented vortex incident on a finite aspect-ratio wing. The vertical positioning of the incident vortex relative to the wing is shown to have a significant impact on the unsteady flow structure. A direct impingement of the st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2016-07, Vol.799, p.128-158
Hauptverfasser: Barnes, C. J., Visbal, M. R., Huang, P. G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 158
container_issue
container_start_page 128
container_title Journal of fluid mechanics
container_volume 799
creator Barnes, C. J.
Visbal, M. R.
Huang, P. G.
description This article explores the three-dimensional flow structure of a streamwise-oriented vortex incident on a finite aspect-ratio wing. The vertical positioning of the incident vortex relative to the wing is shown to have a significant impact on the unsteady flow structure. A direct impingement of the streamwise vortex produces a spiralling instability in the vortex just upstream of the leading edge, reminiscent of the helical instability modes of a Batchelor vortex. A small negative vertical offset develops a more pronounced instability while a positive vertical offset removes the instability altogether. These differences in vertical position are a consequence of the upstream influence of pressure gradients provided by the wing. Direct impingement or a negative vertical offset subject the vortex to an adverse pressure gradient that leads to a reduced axial velocity and diminished swirl conducive to hydrodynamic instability. Conversely, a positive vertical offset removes instability by placing the streamwise vortex in line with a favourable pressure gradient, thereby enhancing swirl and inhibiting the growth of unstable modes. In every case, the helical instability only occurs when the properties of the incident vortex fall within the instability threshold predicted by linear stability theory. The influence of pressure gradients associated with separation and stall downstream also have the potential to introduce suction-side instabilities for a positive vertical offset. The influence of the wing is more severe for larger vortices and diminishes with vortex size due to weaker interaction and increased viscous stability. Helical instability is not the only possible outcome in a direct impingement. Jet-like vortices and a higher swirl ratio in wake-like vortices can retain stability upon impact, resulting in the laminar vortex splitting over either side of the wing.
doi_str_mv 10.1017/jfm.2016.320
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1901661745</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2016_320</cupid><sourcerecordid>1901661745</sourcerecordid><originalsourceid>FETCH-LOGICAL-c302t-13e649b554df3bd777890463865e6302466715726044bda7eb634e38df252a9a3</originalsourceid><addsrcrecordid>eNptkMtKAzEUhoMoWKs7HyDg1hlzm6SzlOINCt3oOmRmTmpKZ1KTtNWd7-Ab-iSm2IULV-c_8J3_wIfQJSUlJVTdLG1fMkJlyRk5QiMqZF0oKapjNCKEsYJSRk7RWYxLQigntRohOx9wegUM1kKbIvYWbyEk15pVzjZCwmbocOsD4JjCpk2bnNywX8D0Oxeh8MHBkKDDWx8SvH9_fu3csMhQgmDa5PwQz9GJNasIF4c5Ri_3d8_Tx2I2f3ia3s6KlhOWCspBirqpKtFZ3nRKqUlNhOQTWYHMhJBS0UoxSYRoOqOgkVwAn3SWVczUho_R1W_vOvi3DcSkl34ThvxS0zqbkVSJKlPXv1QbfIwBrF4H15vwoSnRe5M6m9R7kzqbzHh5wE3fBNct4E_rfwc_gXJ26Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1901661745</pqid></control><display><type>article</type><title>On the effects of vertical offset and core structure in streamwise-oriented vortex–wing interactions</title><source>Cambridge University Press Journals Complete</source><creator>Barnes, C. J. ; Visbal, M. R. ; Huang, P. G.</creator><creatorcontrib>Barnes, C. J. ; Visbal, M. R. ; Huang, P. G.</creatorcontrib><description>This article explores the three-dimensional flow structure of a streamwise-oriented vortex incident on a finite aspect-ratio wing. The vertical positioning of the incident vortex relative to the wing is shown to have a significant impact on the unsteady flow structure. A direct impingement of the streamwise vortex produces a spiralling instability in the vortex just upstream of the leading edge, reminiscent of the helical instability modes of a Batchelor vortex. A small negative vertical offset develops a more pronounced instability while a positive vertical offset removes the instability altogether. These differences in vertical position are a consequence of the upstream influence of pressure gradients provided by the wing. Direct impingement or a negative vertical offset subject the vortex to an adverse pressure gradient that leads to a reduced axial velocity and diminished swirl conducive to hydrodynamic instability. Conversely, a positive vertical offset removes instability by placing the streamwise vortex in line with a favourable pressure gradient, thereby enhancing swirl and inhibiting the growth of unstable modes. In every case, the helical instability only occurs when the properties of the incident vortex fall within the instability threshold predicted by linear stability theory. The influence of pressure gradients associated with separation and stall downstream also have the potential to introduce suction-side instabilities for a positive vertical offset. The influence of the wing is more severe for larger vortices and diminishes with vortex size due to weaker interaction and increased viscous stability. Helical instability is not the only possible outcome in a direct impingement. Jet-like vortices and a higher swirl ratio in wake-like vortices can retain stability upon impact, resulting in the laminar vortex splitting over either side of the wing.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2016.320</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Aircraft ; Breakdowns ; Flow structures ; Fluid dynamics ; Fluid flow ; Fluid mechanics ; Fluids ; Gradients ; Growth ; Hydrodynamics ; Impingement ; Instability ; Interactions ; Laminar wakes ; Modes ; Pressure ; Pressure gradients ; Reynolds number ; Simulation ; Splitting ; Stability ; Stalling ; Suction ; Three dimensional flow ; Unsteady flow ; Upstream ; Velocity ; Vertical orientation ; Vortices</subject><ispartof>Journal of fluid mechanics, 2016-07, Vol.799, p.128-158</ispartof><rights>Cambridge University Press 2016. This is a work of the U.S. Government and is not subject to copyright protection in the United States.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c302t-13e649b554df3bd777890463865e6302466715726044bda7eb634e38df252a9a3</citedby><cites>FETCH-LOGICAL-c302t-13e649b554df3bd777890463865e6302466715726044bda7eb634e38df252a9a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112016003207/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids></links><search><creatorcontrib>Barnes, C. J.</creatorcontrib><creatorcontrib>Visbal, M. R.</creatorcontrib><creatorcontrib>Huang, P. G.</creatorcontrib><title>On the effects of vertical offset and core structure in streamwise-oriented vortex–wing interactions</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>This article explores the three-dimensional flow structure of a streamwise-oriented vortex incident on a finite aspect-ratio wing. The vertical positioning of the incident vortex relative to the wing is shown to have a significant impact on the unsteady flow structure. A direct impingement of the streamwise vortex produces a spiralling instability in the vortex just upstream of the leading edge, reminiscent of the helical instability modes of a Batchelor vortex. A small negative vertical offset develops a more pronounced instability while a positive vertical offset removes the instability altogether. These differences in vertical position are a consequence of the upstream influence of pressure gradients provided by the wing. Direct impingement or a negative vertical offset subject the vortex to an adverse pressure gradient that leads to a reduced axial velocity and diminished swirl conducive to hydrodynamic instability. Conversely, a positive vertical offset removes instability by placing the streamwise vortex in line with a favourable pressure gradient, thereby enhancing swirl and inhibiting the growth of unstable modes. In every case, the helical instability only occurs when the properties of the incident vortex fall within the instability threshold predicted by linear stability theory. The influence of pressure gradients associated with separation and stall downstream also have the potential to introduce suction-side instabilities for a positive vertical offset. The influence of the wing is more severe for larger vortices and diminishes with vortex size due to weaker interaction and increased viscous stability. Helical instability is not the only possible outcome in a direct impingement. Jet-like vortices and a higher swirl ratio in wake-like vortices can retain stability upon impact, resulting in the laminar vortex splitting over either side of the wing.</description><subject>Aircraft</subject><subject>Breakdowns</subject><subject>Flow structures</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Fluids</subject><subject>Gradients</subject><subject>Growth</subject><subject>Hydrodynamics</subject><subject>Impingement</subject><subject>Instability</subject><subject>Interactions</subject><subject>Laminar wakes</subject><subject>Modes</subject><subject>Pressure</subject><subject>Pressure gradients</subject><subject>Reynolds number</subject><subject>Simulation</subject><subject>Splitting</subject><subject>Stability</subject><subject>Stalling</subject><subject>Suction</subject><subject>Three dimensional flow</subject><subject>Unsteady flow</subject><subject>Upstream</subject><subject>Velocity</subject><subject>Vertical orientation</subject><subject>Vortices</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkMtKAzEUhoMoWKs7HyDg1hlzm6SzlOINCt3oOmRmTmpKZ1KTtNWd7-Ab-iSm2IULV-c_8J3_wIfQJSUlJVTdLG1fMkJlyRk5QiMqZF0oKapjNCKEsYJSRk7RWYxLQigntRohOx9wegUM1kKbIvYWbyEk15pVzjZCwmbocOsD4JjCpk2bnNywX8D0Oxeh8MHBkKDDWx8SvH9_fu3csMhQgmDa5PwQz9GJNasIF4c5Ri_3d8_Tx2I2f3ia3s6KlhOWCspBirqpKtFZ3nRKqUlNhOQTWYHMhJBS0UoxSYRoOqOgkVwAn3SWVczUho_R1W_vOvi3DcSkl34ThvxS0zqbkVSJKlPXv1QbfIwBrF4H15vwoSnRe5M6m9R7kzqbzHh5wE3fBNct4E_rfwc_gXJ26Q</recordid><startdate>20160725</startdate><enddate>20160725</enddate><creator>Barnes, C. J.</creator><creator>Visbal, M. R.</creator><creator>Huang, P. G.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20160725</creationdate><title>On the effects of vertical offset and core structure in streamwise-oriented vortex–wing interactions</title><author>Barnes, C. J. ; Visbal, M. R. ; Huang, P. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c302t-13e649b554df3bd777890463865e6302466715726044bda7eb634e38df252a9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Aircraft</topic><topic>Breakdowns</topic><topic>Flow structures</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Fluids</topic><topic>Gradients</topic><topic>Growth</topic><topic>Hydrodynamics</topic><topic>Impingement</topic><topic>Instability</topic><topic>Interactions</topic><topic>Laminar wakes</topic><topic>Modes</topic><topic>Pressure</topic><topic>Pressure gradients</topic><topic>Reynolds number</topic><topic>Simulation</topic><topic>Splitting</topic><topic>Stability</topic><topic>Stalling</topic><topic>Suction</topic><topic>Three dimensional flow</topic><topic>Unsteady flow</topic><topic>Upstream</topic><topic>Velocity</topic><topic>Vertical orientation</topic><topic>Vortices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barnes, C. J.</creatorcontrib><creatorcontrib>Visbal, M. R.</creatorcontrib><creatorcontrib>Huang, P. G.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barnes, C. J.</au><au>Visbal, M. R.</au><au>Huang, P. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the effects of vertical offset and core structure in streamwise-oriented vortex–wing interactions</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2016-07-25</date><risdate>2016</risdate><volume>799</volume><spage>128</spage><epage>158</epage><pages>128-158</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>This article explores the three-dimensional flow structure of a streamwise-oriented vortex incident on a finite aspect-ratio wing. The vertical positioning of the incident vortex relative to the wing is shown to have a significant impact on the unsteady flow structure. A direct impingement of the streamwise vortex produces a spiralling instability in the vortex just upstream of the leading edge, reminiscent of the helical instability modes of a Batchelor vortex. A small negative vertical offset develops a more pronounced instability while a positive vertical offset removes the instability altogether. These differences in vertical position are a consequence of the upstream influence of pressure gradients provided by the wing. Direct impingement or a negative vertical offset subject the vortex to an adverse pressure gradient that leads to a reduced axial velocity and diminished swirl conducive to hydrodynamic instability. Conversely, a positive vertical offset removes instability by placing the streamwise vortex in line with a favourable pressure gradient, thereby enhancing swirl and inhibiting the growth of unstable modes. In every case, the helical instability only occurs when the properties of the incident vortex fall within the instability threshold predicted by linear stability theory. The influence of pressure gradients associated with separation and stall downstream also have the potential to introduce suction-side instabilities for a positive vertical offset. The influence of the wing is more severe for larger vortices and diminishes with vortex size due to weaker interaction and increased viscous stability. Helical instability is not the only possible outcome in a direct impingement. Jet-like vortices and a higher swirl ratio in wake-like vortices can retain stability upon impact, resulting in the laminar vortex splitting over either side of the wing.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2016.320</doi><tpages>31</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2016-07, Vol.799, p.128-158
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_journals_1901661745
source Cambridge University Press Journals Complete
subjects Aircraft
Breakdowns
Flow structures
Fluid dynamics
Fluid flow
Fluid mechanics
Fluids
Gradients
Growth
Hydrodynamics
Impingement
Instability
Interactions
Laminar wakes
Modes
Pressure
Pressure gradients
Reynolds number
Simulation
Splitting
Stability
Stalling
Suction
Three dimensional flow
Unsteady flow
Upstream
Velocity
Vertical orientation
Vortices
title On the effects of vertical offset and core structure in streamwise-oriented vortex–wing interactions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T07%3A06%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20effects%20of%20vertical%20offset%20and%20core%20structure%20in%20streamwise-oriented%20vortex%E2%80%93wing%20interactions&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Barnes,%20C.%20J.&rft.date=2016-07-25&rft.volume=799&rft.spage=128&rft.epage=158&rft.pages=128-158&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2016.320&rft_dat=%3Cproquest_cross%3E1901661745%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1901661745&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2016_320&rfr_iscdi=true