Combined influence of coating permeability and roughness on supersonic boundary layer stability and transition
A joint theoretical and experimental investigation of the influence of the surface permeability and roughness on the stability and laminar–turbulent transition of a supersonic flat-plate boundary layer at a free-stream Mach number of $M_{\infty }=2$ has been performed. Good quantitative agreement of...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2016-07, Vol.798, p.751-773 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 773 |
---|---|
container_issue | |
container_start_page | 751 |
container_title | Journal of fluid mechanics |
container_volume | 798 |
creator | Lysenko, V. I. Gaponov, S. A. Smorodsky, B. V. Yermolaev, Yu. G. Kosinov, A. D. Semionov, N. V. |
description | A joint theoretical and experimental investigation of the influence of the surface permeability and roughness on the stability and laminar–turbulent transition of a supersonic flat-plate boundary layer at a free-stream Mach number of
$M_{\infty }=2$
has been performed. Good quantitative agreement of the experimental data obtained with artificially generated disturbances performed on models with various porous inserts and calculations based on linear stability theory has been achieved. An increase of the pore size and porous-coating thickness leads to a boundary layer destabilization that accelerates the laminar–turbulent transition. It is shown that as a certain (critical) roughness value is reached, with an increase in the thickness of the rough and porous coating, the boundary layer stability diminishes and the laminar–turbulent transition is displaced towards the leading edge of the model. |
doi_str_mv | 10.1017/jfm.2016.347 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1901661721</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2016_347</cupid><sourcerecordid>1901661721</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-788f21f0099ceebc303685f1545bffe0ad442f34b9b5cf2fb4d29fa973f496a63</originalsourceid><addsrcrecordid>eNptkD1PwzAQhi0EEqWw8QMssZJgO05Sj6jiS6rEArNlO77gKrGLnQz997hqhw5MJ909753uQeiekpIS2j5tYSwZoU1Z8fYCLShvRNE2vL5EC0IYKyhl5BrdpLQlhFZEtAvk12HUztsOOw_DbL2xOAA2QU3O93hn42iVdoOb9lj5Dscw9z_epoSDx2nO8xS8M1iH2Xcq7vGg9jbiNJ2Hpqh8cpML_hZdgRqSvTvVJfp-fflavxebz7eP9fOmMFWzmop2tQJGgRAhjLXaVCS3a6A1rzWAJarjnEHFtdC1AQaad0yAEm0FXDSqqZbo4bh3F8PvbNMkt2GOPp-UVGRDDW0ZzdTjkTIxpBQtyF10Y_5CUiIPRmU2Kg9GZTaa8fKEq1FH1_X2bOt_gT-vunsi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1901661721</pqid></control><display><type>article</type><title>Combined influence of coating permeability and roughness on supersonic boundary layer stability and transition</title><source>Cambridge University Press Journals Complete</source><creator>Lysenko, V. I. ; Gaponov, S. A. ; Smorodsky, B. V. ; Yermolaev, Yu. G. ; Kosinov, A. D. ; Semionov, N. V.</creator><creatorcontrib>Lysenko, V. I. ; Gaponov, S. A. ; Smorodsky, B. V. ; Yermolaev, Yu. G. ; Kosinov, A. D. ; Semionov, N. V.</creatorcontrib><description>A joint theoretical and experimental investigation of the influence of the surface permeability and roughness on the stability and laminar–turbulent transition of a supersonic flat-plate boundary layer at a free-stream Mach number of
$M_{\infty }=2$
has been performed. Good quantitative agreement of the experimental data obtained with artificially generated disturbances performed on models with various porous inserts and calculations based on linear stability theory has been achieved. An increase of the pore size and porous-coating thickness leads to a boundary layer destabilization that accelerates the laminar–turbulent transition. It is shown that as a certain (critical) roughness value is reached, with an increase in the thickness of the rough and porous coating, the boundary layer stability diminishes and the laminar–turbulent transition is displaced towards the leading edge of the model.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2016.347</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Boundary layer ; Boundary layer stability ; Boundary layer transition ; Boundary layers ; Coating ; Destabilization ; Experiments ; Heat ; Inserts ; International conferences ; Mach number ; Mechanics ; Permeability ; Plate boundaries ; Pore size ; Porosity ; Reynolds number ; Roughness ; Stability ; Studies ; Supersonic boundary layers ; Surface stability ; Turbulence ; Velocity</subject><ispartof>Journal of fluid mechanics, 2016-07, Vol.798, p.751-773</ispartof><rights>2016 Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-788f21f0099ceebc303685f1545bffe0ad442f34b9b5cf2fb4d29fa973f496a63</citedby><cites>FETCH-LOGICAL-c368t-788f21f0099ceebc303685f1545bffe0ad442f34b9b5cf2fb4d29fa973f496a63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112016003475/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids></links><search><creatorcontrib>Lysenko, V. I.</creatorcontrib><creatorcontrib>Gaponov, S. A.</creatorcontrib><creatorcontrib>Smorodsky, B. V.</creatorcontrib><creatorcontrib>Yermolaev, Yu. G.</creatorcontrib><creatorcontrib>Kosinov, A. D.</creatorcontrib><creatorcontrib>Semionov, N. V.</creatorcontrib><title>Combined influence of coating permeability and roughness on supersonic boundary layer stability and transition</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>A joint theoretical and experimental investigation of the influence of the surface permeability and roughness on the stability and laminar–turbulent transition of a supersonic flat-plate boundary layer at a free-stream Mach number of
$M_{\infty }=2$
has been performed. Good quantitative agreement of the experimental data obtained with artificially generated disturbances performed on models with various porous inserts and calculations based on linear stability theory has been achieved. An increase of the pore size and porous-coating thickness leads to a boundary layer destabilization that accelerates the laminar–turbulent transition. It is shown that as a certain (critical) roughness value is reached, with an increase in the thickness of the rough and porous coating, the boundary layer stability diminishes and the laminar–turbulent transition is displaced towards the leading edge of the model.</description><subject>Boundary layer</subject><subject>Boundary layer stability</subject><subject>Boundary layer transition</subject><subject>Boundary layers</subject><subject>Coating</subject><subject>Destabilization</subject><subject>Experiments</subject><subject>Heat</subject><subject>Inserts</subject><subject>International conferences</subject><subject>Mach number</subject><subject>Mechanics</subject><subject>Permeability</subject><subject>Plate boundaries</subject><subject>Pore size</subject><subject>Porosity</subject><subject>Reynolds number</subject><subject>Roughness</subject><subject>Stability</subject><subject>Studies</subject><subject>Supersonic boundary layers</subject><subject>Surface stability</subject><subject>Turbulence</subject><subject>Velocity</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkD1PwzAQhi0EEqWw8QMssZJgO05Sj6jiS6rEArNlO77gKrGLnQz997hqhw5MJ909753uQeiekpIS2j5tYSwZoU1Z8fYCLShvRNE2vL5EC0IYKyhl5BrdpLQlhFZEtAvk12HUztsOOw_DbL2xOAA2QU3O93hn42iVdoOb9lj5Dscw9z_epoSDx2nO8xS8M1iH2Xcq7vGg9jbiNJ2Hpqh8cpML_hZdgRqSvTvVJfp-fflavxebz7eP9fOmMFWzmop2tQJGgRAhjLXaVCS3a6A1rzWAJarjnEHFtdC1AQaad0yAEm0FXDSqqZbo4bh3F8PvbNMkt2GOPp-UVGRDDW0ZzdTjkTIxpBQtyF10Y_5CUiIPRmU2Kg9GZTaa8fKEq1FH1_X2bOt_gT-vunsi</recordid><startdate>20160710</startdate><enddate>20160710</enddate><creator>Lysenko, V. I.</creator><creator>Gaponov, S. A.</creator><creator>Smorodsky, B. V.</creator><creator>Yermolaev, Yu. G.</creator><creator>Kosinov, A. D.</creator><creator>Semionov, N. V.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20160710</creationdate><title>Combined influence of coating permeability and roughness on supersonic boundary layer stability and transition</title><author>Lysenko, V. I. ; Gaponov, S. A. ; Smorodsky, B. V. ; Yermolaev, Yu. G. ; Kosinov, A. D. ; Semionov, N. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-788f21f0099ceebc303685f1545bffe0ad442f34b9b5cf2fb4d29fa973f496a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Boundary layer</topic><topic>Boundary layer stability</topic><topic>Boundary layer transition</topic><topic>Boundary layers</topic><topic>Coating</topic><topic>Destabilization</topic><topic>Experiments</topic><topic>Heat</topic><topic>Inserts</topic><topic>International conferences</topic><topic>Mach number</topic><topic>Mechanics</topic><topic>Permeability</topic><topic>Plate boundaries</topic><topic>Pore size</topic><topic>Porosity</topic><topic>Reynolds number</topic><topic>Roughness</topic><topic>Stability</topic><topic>Studies</topic><topic>Supersonic boundary layers</topic><topic>Surface stability</topic><topic>Turbulence</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lysenko, V. I.</creatorcontrib><creatorcontrib>Gaponov, S. A.</creatorcontrib><creatorcontrib>Smorodsky, B. V.</creatorcontrib><creatorcontrib>Yermolaev, Yu. G.</creatorcontrib><creatorcontrib>Kosinov, A. D.</creatorcontrib><creatorcontrib>Semionov, N. V.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lysenko, V. I.</au><au>Gaponov, S. A.</au><au>Smorodsky, B. V.</au><au>Yermolaev, Yu. G.</au><au>Kosinov, A. D.</au><au>Semionov, N. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combined influence of coating permeability and roughness on supersonic boundary layer stability and transition</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2016-07-10</date><risdate>2016</risdate><volume>798</volume><spage>751</spage><epage>773</epage><pages>751-773</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>A joint theoretical and experimental investigation of the influence of the surface permeability and roughness on the stability and laminar–turbulent transition of a supersonic flat-plate boundary layer at a free-stream Mach number of
$M_{\infty }=2$
has been performed. Good quantitative agreement of the experimental data obtained with artificially generated disturbances performed on models with various porous inserts and calculations based on linear stability theory has been achieved. An increase of the pore size and porous-coating thickness leads to a boundary layer destabilization that accelerates the laminar–turbulent transition. It is shown that as a certain (critical) roughness value is reached, with an increase in the thickness of the rough and porous coating, the boundary layer stability diminishes and the laminar–turbulent transition is displaced towards the leading edge of the model.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2016.347</doi><tpages>23</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2016-07, Vol.798, p.751-773 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_proquest_journals_1901661721 |
source | Cambridge University Press Journals Complete |
subjects | Boundary layer Boundary layer stability Boundary layer transition Boundary layers Coating Destabilization Experiments Heat Inserts International conferences Mach number Mechanics Permeability Plate boundaries Pore size Porosity Reynolds number Roughness Stability Studies Supersonic boundary layers Surface stability Turbulence Velocity |
title | Combined influence of coating permeability and roughness on supersonic boundary layer stability and transition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A46%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combined%20influence%20of%20coating%20permeability%20and%20roughness%20on%20supersonic%20boundary%20layer%20stability%20and%20transition&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Lysenko,%20V.%20I.&rft.date=2016-07-10&rft.volume=798&rft.spage=751&rft.epage=773&rft.pages=751-773&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2016.347&rft_dat=%3Cproquest_cross%3E1901661721%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1901661721&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2016_347&rfr_iscdi=true |