Automatic Synchronization of Multi-user Photo Galleries

In this paper we address the issue of photo galleries synchronization, where pictures related to the same event are collected by different users. Existing solutions to address the problem are usually based on unrealistic assumptions, like time consistency across photo galleries, and often heavily re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on multimedia 2017-06, Vol.19 (6), p.1285-1298
Hauptverfasser: Sansone, Emanuele, Apostolidis, Konstantinos, Conci, Nicola, Boato, Giulia, Mezaris, Vasileios, De Natale, Francesco G. B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1298
container_issue 6
container_start_page 1285
container_title IEEE transactions on multimedia
container_volume 19
creator Sansone, Emanuele
Apostolidis, Konstantinos
Conci, Nicola
Boato, Giulia
Mezaris, Vasileios
De Natale, Francesco G. B.
description In this paper we address the issue of photo galleries synchronization, where pictures related to the same event are collected by different users. Existing solutions to address the problem are usually based on unrealistic assumptions, like time consistency across photo galleries, and often heavily rely on heuristics, therefore limiting the applicability to real-world scenarios. We propose a solution that achieves better generalization performance for the synchronization task compared to the available literature. The method is characterized by three stages: at first, deep convolutional neural network features are used to assess the visual similarity among the photos; then, pairs of similar photos are detected across different galleries and used to construct a graph; eventually, a probabilistic graphical model is used to estimate the temporal offset of each pair of galleries, by traversing the minimum spanning tree extracted from this graph. The experimental evaluation is conducted on four publicly available datasets covering different types of events, demonstrating the strength of our proposed method. A thorough discussion of the obtained results is provided for a critical assessment of the quality in synchronization.
doi_str_mv 10.1109/TMM.2017.2655446
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1901491713</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7822999</ieee_id><sourcerecordid>1901491713</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-40662c5685ae49043ef5feccec1a5cd6d9aad0a58ebdc2d679b11e44f4a5815d3</originalsourceid><addsrcrecordid>eNo9kM1LAzEQxYMoWKt3wcuC560z2WTTHEvRKrQoWM8hzc7SLdtNTXYP-teb0uJpPnhvHvNj7B5hggj6ab1aTTigmvBSSiHKCzZCLTAHUOoy9ZJDrjnCNbuJcQeAQoIaMTUber-3feOyz5_ObYPvmt80-i7zdbYa2r7Jh0gh-9j63mcL27YUGoq37Kq2baS7cx2zr5fn9fw1X74v3uazZe6KouhzAWXJnSyn0pLQIAqqZU3OkUMrXVVW2toKrJzSpnK8KpXeIJIQtUg7lFUxZo-nu4fgvweKvdn5IXQp0qBOT2hUWCQVnFQu-BgD1eYQmr0NPwbBHPGYhMcc8ZgznmR5OFkaIvqXqynnWuviD20sYN4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1901491713</pqid></control><display><type>article</type><title>Automatic Synchronization of Multi-user Photo Galleries</title><source>IEEE Electronic Library (IEL)</source><creator>Sansone, Emanuele ; Apostolidis, Konstantinos ; Conci, Nicola ; Boato, Giulia ; Mezaris, Vasileios ; De Natale, Francesco G. B.</creator><creatorcontrib>Sansone, Emanuele ; Apostolidis, Konstantinos ; Conci, Nicola ; Boato, Giulia ; Mezaris, Vasileios ; De Natale, Francesco G. B.</creatorcontrib><description>In this paper we address the issue of photo galleries synchronization, where pictures related to the same event are collected by different users. Existing solutions to address the problem are usually based on unrealistic assumptions, like time consistency across photo galleries, and often heavily rely on heuristics, therefore limiting the applicability to real-world scenarios. We propose a solution that achieves better generalization performance for the synchronization task compared to the available literature. The method is characterized by three stages: at first, deep convolutional neural network features are used to assess the visual similarity among the photos; then, pairs of similar photos are detected across different galleries and used to construct a graph; eventually, a probabilistic graphical model is used to estimate the temporal offset of each pair of galleries, by traversing the minimum spanning tree extracted from this graph. The experimental evaluation is conducted on four publicly available datasets covering different types of events, demonstrating the strength of our proposed method. A thorough discussion of the obtained results is provided for a critical assessment of the quality in synchronization.</description><identifier>ISSN: 1520-9210</identifier><identifier>EISSN: 1941-0077</identifier><identifier>DOI: 10.1109/TMM.2017.2655446</identifier><identifier>CODEN: ITMUF8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; Events ; Feature extraction ; Galleries ; Markov networks ; Media ; Multimedia communication ; multimedia synchronization ; multimodal ; Neural networks ; Organizations ; Pictures ; Probabilistic logic ; Quality assessment ; Software reviews ; Synchronism ; Synchronization ; Visualization ; weighted graph</subject><ispartof>IEEE transactions on multimedia, 2017-06, Vol.19 (6), p.1285-1298</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-40662c5685ae49043ef5feccec1a5cd6d9aad0a58ebdc2d679b11e44f4a5815d3</citedby><cites>FETCH-LOGICAL-c333t-40662c5685ae49043ef5feccec1a5cd6d9aad0a58ebdc2d679b11e44f4a5815d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7822999$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7822999$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sansone, Emanuele</creatorcontrib><creatorcontrib>Apostolidis, Konstantinos</creatorcontrib><creatorcontrib>Conci, Nicola</creatorcontrib><creatorcontrib>Boato, Giulia</creatorcontrib><creatorcontrib>Mezaris, Vasileios</creatorcontrib><creatorcontrib>De Natale, Francesco G. B.</creatorcontrib><title>Automatic Synchronization of Multi-user Photo Galleries</title><title>IEEE transactions on multimedia</title><addtitle>TMM</addtitle><description>In this paper we address the issue of photo galleries synchronization, where pictures related to the same event are collected by different users. Existing solutions to address the problem are usually based on unrealistic assumptions, like time consistency across photo galleries, and often heavily rely on heuristics, therefore limiting the applicability to real-world scenarios. We propose a solution that achieves better generalization performance for the synchronization task compared to the available literature. The method is characterized by three stages: at first, deep convolutional neural network features are used to assess the visual similarity among the photos; then, pairs of similar photos are detected across different galleries and used to construct a graph; eventually, a probabilistic graphical model is used to estimate the temporal offset of each pair of galleries, by traversing the minimum spanning tree extracted from this graph. The experimental evaluation is conducted on four publicly available datasets covering different types of events, demonstrating the strength of our proposed method. A thorough discussion of the obtained results is provided for a critical assessment of the quality in synchronization.</description><subject>Artificial neural networks</subject><subject>Events</subject><subject>Feature extraction</subject><subject>Galleries</subject><subject>Markov networks</subject><subject>Media</subject><subject>Multimedia communication</subject><subject>multimedia synchronization</subject><subject>multimodal</subject><subject>Neural networks</subject><subject>Organizations</subject><subject>Pictures</subject><subject>Probabilistic logic</subject><subject>Quality assessment</subject><subject>Software reviews</subject><subject>Synchronism</subject><subject>Synchronization</subject><subject>Visualization</subject><subject>weighted graph</subject><issn>1520-9210</issn><issn>1941-0077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1LAzEQxYMoWKt3wcuC560z2WTTHEvRKrQoWM8hzc7SLdtNTXYP-teb0uJpPnhvHvNj7B5hggj6ab1aTTigmvBSSiHKCzZCLTAHUOoy9ZJDrjnCNbuJcQeAQoIaMTUber-3feOyz5_ObYPvmt80-i7zdbYa2r7Jh0gh-9j63mcL27YUGoq37Kq2baS7cx2zr5fn9fw1X74v3uazZe6KouhzAWXJnSyn0pLQIAqqZU3OkUMrXVVW2toKrJzSpnK8KpXeIJIQtUg7lFUxZo-nu4fgvweKvdn5IXQp0qBOT2hUWCQVnFQu-BgD1eYQmr0NPwbBHPGYhMcc8ZgznmR5OFkaIvqXqynnWuviD20sYN4</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Sansone, Emanuele</creator><creator>Apostolidis, Konstantinos</creator><creator>Conci, Nicola</creator><creator>Boato, Giulia</creator><creator>Mezaris, Vasileios</creator><creator>De Natale, Francesco G. B.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20170601</creationdate><title>Automatic Synchronization of Multi-user Photo Galleries</title><author>Sansone, Emanuele ; Apostolidis, Konstantinos ; Conci, Nicola ; Boato, Giulia ; Mezaris, Vasileios ; De Natale, Francesco G. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-40662c5685ae49043ef5feccec1a5cd6d9aad0a58ebdc2d679b11e44f4a5815d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Artificial neural networks</topic><topic>Events</topic><topic>Feature extraction</topic><topic>Galleries</topic><topic>Markov networks</topic><topic>Media</topic><topic>Multimedia communication</topic><topic>multimedia synchronization</topic><topic>multimodal</topic><topic>Neural networks</topic><topic>Organizations</topic><topic>Pictures</topic><topic>Probabilistic logic</topic><topic>Quality assessment</topic><topic>Software reviews</topic><topic>Synchronism</topic><topic>Synchronization</topic><topic>Visualization</topic><topic>weighted graph</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sansone, Emanuele</creatorcontrib><creatorcontrib>Apostolidis, Konstantinos</creatorcontrib><creatorcontrib>Conci, Nicola</creatorcontrib><creatorcontrib>Boato, Giulia</creatorcontrib><creatorcontrib>Mezaris, Vasileios</creatorcontrib><creatorcontrib>De Natale, Francesco G. B.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on multimedia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sansone, Emanuele</au><au>Apostolidis, Konstantinos</au><au>Conci, Nicola</au><au>Boato, Giulia</au><au>Mezaris, Vasileios</au><au>De Natale, Francesco G. B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic Synchronization of Multi-user Photo Galleries</atitle><jtitle>IEEE transactions on multimedia</jtitle><stitle>TMM</stitle><date>2017-06-01</date><risdate>2017</risdate><volume>19</volume><issue>6</issue><spage>1285</spage><epage>1298</epage><pages>1285-1298</pages><issn>1520-9210</issn><eissn>1941-0077</eissn><coden>ITMUF8</coden><abstract>In this paper we address the issue of photo galleries synchronization, where pictures related to the same event are collected by different users. Existing solutions to address the problem are usually based on unrealistic assumptions, like time consistency across photo galleries, and often heavily rely on heuristics, therefore limiting the applicability to real-world scenarios. We propose a solution that achieves better generalization performance for the synchronization task compared to the available literature. The method is characterized by three stages: at first, deep convolutional neural network features are used to assess the visual similarity among the photos; then, pairs of similar photos are detected across different galleries and used to construct a graph; eventually, a probabilistic graphical model is used to estimate the temporal offset of each pair of galleries, by traversing the minimum spanning tree extracted from this graph. The experimental evaluation is conducted on four publicly available datasets covering different types of events, demonstrating the strength of our proposed method. A thorough discussion of the obtained results is provided for a critical assessment of the quality in synchronization.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TMM.2017.2655446</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1520-9210
ispartof IEEE transactions on multimedia, 2017-06, Vol.19 (6), p.1285-1298
issn 1520-9210
1941-0077
language eng
recordid cdi_proquest_journals_1901491713
source IEEE Electronic Library (IEL)
subjects Artificial neural networks
Events
Feature extraction
Galleries
Markov networks
Media
Multimedia communication
multimedia synchronization
multimodal
Neural networks
Organizations
Pictures
Probabilistic logic
Quality assessment
Software reviews
Synchronism
Synchronization
Visualization
weighted graph
title Automatic Synchronization of Multi-user Photo Galleries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T04%3A14%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20Synchronization%20of%20Multi-user%20Photo%20Galleries&rft.jtitle=IEEE%20transactions%20on%20multimedia&rft.au=Sansone,%20Emanuele&rft.date=2017-06-01&rft.volume=19&rft.issue=6&rft.spage=1285&rft.epage=1298&rft.pages=1285-1298&rft.issn=1520-9210&rft.eissn=1941-0077&rft.coden=ITMUF8&rft_id=info:doi/10.1109/TMM.2017.2655446&rft_dat=%3Cproquest_RIE%3E1901491713%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1901491713&rft_id=info:pmid/&rft_ieee_id=7822999&rfr_iscdi=true