Automatic Synchronization of Multi-user Photo Galleries
In this paper we address the issue of photo galleries synchronization, where pictures related to the same event are collected by different users. Existing solutions to address the problem are usually based on unrealistic assumptions, like time consistency across photo galleries, and often heavily re...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on multimedia 2017-06, Vol.19 (6), p.1285-1298 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1298 |
---|---|
container_issue | 6 |
container_start_page | 1285 |
container_title | IEEE transactions on multimedia |
container_volume | 19 |
creator | Sansone, Emanuele Apostolidis, Konstantinos Conci, Nicola Boato, Giulia Mezaris, Vasileios De Natale, Francesco G. B. |
description | In this paper we address the issue of photo galleries synchronization, where pictures related to the same event are collected by different users. Existing solutions to address the problem are usually based on unrealistic assumptions, like time consistency across photo galleries, and often heavily rely on heuristics, therefore limiting the applicability to real-world scenarios. We propose a solution that achieves better generalization performance for the synchronization task compared to the available literature. The method is characterized by three stages: at first, deep convolutional neural network features are used to assess the visual similarity among the photos; then, pairs of similar photos are detected across different galleries and used to construct a graph; eventually, a probabilistic graphical model is used to estimate the temporal offset of each pair of galleries, by traversing the minimum spanning tree extracted from this graph. The experimental evaluation is conducted on four publicly available datasets covering different types of events, demonstrating the strength of our proposed method. A thorough discussion of the obtained results is provided for a critical assessment of the quality in synchronization. |
doi_str_mv | 10.1109/TMM.2017.2655446 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1901491713</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7822999</ieee_id><sourcerecordid>1901491713</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-40662c5685ae49043ef5feccec1a5cd6d9aad0a58ebdc2d679b11e44f4a5815d3</originalsourceid><addsrcrecordid>eNo9kM1LAzEQxYMoWKt3wcuC560z2WTTHEvRKrQoWM8hzc7SLdtNTXYP-teb0uJpPnhvHvNj7B5hggj6ab1aTTigmvBSSiHKCzZCLTAHUOoy9ZJDrjnCNbuJcQeAQoIaMTUber-3feOyz5_ObYPvmt80-i7zdbYa2r7Jh0gh-9j63mcL27YUGoq37Kq2baS7cx2zr5fn9fw1X74v3uazZe6KouhzAWXJnSyn0pLQIAqqZU3OkUMrXVVW2toKrJzSpnK8KpXeIJIQtUg7lFUxZo-nu4fgvweKvdn5IXQp0qBOT2hUWCQVnFQu-BgD1eYQmr0NPwbBHPGYhMcc8ZgznmR5OFkaIvqXqynnWuviD20sYN4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1901491713</pqid></control><display><type>article</type><title>Automatic Synchronization of Multi-user Photo Galleries</title><source>IEEE Electronic Library (IEL)</source><creator>Sansone, Emanuele ; Apostolidis, Konstantinos ; Conci, Nicola ; Boato, Giulia ; Mezaris, Vasileios ; De Natale, Francesco G. B.</creator><creatorcontrib>Sansone, Emanuele ; Apostolidis, Konstantinos ; Conci, Nicola ; Boato, Giulia ; Mezaris, Vasileios ; De Natale, Francesco G. B.</creatorcontrib><description>In this paper we address the issue of photo galleries synchronization, where pictures related to the same event are collected by different users. Existing solutions to address the problem are usually based on unrealistic assumptions, like time consistency across photo galleries, and often heavily rely on heuristics, therefore limiting the applicability to real-world scenarios. We propose a solution that achieves better generalization performance for the synchronization task compared to the available literature. The method is characterized by three stages: at first, deep convolutional neural network features are used to assess the visual similarity among the photos; then, pairs of similar photos are detected across different galleries and used to construct a graph; eventually, a probabilistic graphical model is used to estimate the temporal offset of each pair of galleries, by traversing the minimum spanning tree extracted from this graph. The experimental evaluation is conducted on four publicly available datasets covering different types of events, demonstrating the strength of our proposed method. A thorough discussion of the obtained results is provided for a critical assessment of the quality in synchronization.</description><identifier>ISSN: 1520-9210</identifier><identifier>EISSN: 1941-0077</identifier><identifier>DOI: 10.1109/TMM.2017.2655446</identifier><identifier>CODEN: ITMUF8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; Events ; Feature extraction ; Galleries ; Markov networks ; Media ; Multimedia communication ; multimedia synchronization ; multimodal ; Neural networks ; Organizations ; Pictures ; Probabilistic logic ; Quality assessment ; Software reviews ; Synchronism ; Synchronization ; Visualization ; weighted graph</subject><ispartof>IEEE transactions on multimedia, 2017-06, Vol.19 (6), p.1285-1298</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-40662c5685ae49043ef5feccec1a5cd6d9aad0a58ebdc2d679b11e44f4a5815d3</citedby><cites>FETCH-LOGICAL-c333t-40662c5685ae49043ef5feccec1a5cd6d9aad0a58ebdc2d679b11e44f4a5815d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7822999$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7822999$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sansone, Emanuele</creatorcontrib><creatorcontrib>Apostolidis, Konstantinos</creatorcontrib><creatorcontrib>Conci, Nicola</creatorcontrib><creatorcontrib>Boato, Giulia</creatorcontrib><creatorcontrib>Mezaris, Vasileios</creatorcontrib><creatorcontrib>De Natale, Francesco G. B.</creatorcontrib><title>Automatic Synchronization of Multi-user Photo Galleries</title><title>IEEE transactions on multimedia</title><addtitle>TMM</addtitle><description>In this paper we address the issue of photo galleries synchronization, where pictures related to the same event are collected by different users. Existing solutions to address the problem are usually based on unrealistic assumptions, like time consistency across photo galleries, and often heavily rely on heuristics, therefore limiting the applicability to real-world scenarios. We propose a solution that achieves better generalization performance for the synchronization task compared to the available literature. The method is characterized by three stages: at first, deep convolutional neural network features are used to assess the visual similarity among the photos; then, pairs of similar photos are detected across different galleries and used to construct a graph; eventually, a probabilistic graphical model is used to estimate the temporal offset of each pair of galleries, by traversing the minimum spanning tree extracted from this graph. The experimental evaluation is conducted on four publicly available datasets covering different types of events, demonstrating the strength of our proposed method. A thorough discussion of the obtained results is provided for a critical assessment of the quality in synchronization.</description><subject>Artificial neural networks</subject><subject>Events</subject><subject>Feature extraction</subject><subject>Galleries</subject><subject>Markov networks</subject><subject>Media</subject><subject>Multimedia communication</subject><subject>multimedia synchronization</subject><subject>multimodal</subject><subject>Neural networks</subject><subject>Organizations</subject><subject>Pictures</subject><subject>Probabilistic logic</subject><subject>Quality assessment</subject><subject>Software reviews</subject><subject>Synchronism</subject><subject>Synchronization</subject><subject>Visualization</subject><subject>weighted graph</subject><issn>1520-9210</issn><issn>1941-0077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1LAzEQxYMoWKt3wcuC560z2WTTHEvRKrQoWM8hzc7SLdtNTXYP-teb0uJpPnhvHvNj7B5hggj6ab1aTTigmvBSSiHKCzZCLTAHUOoy9ZJDrjnCNbuJcQeAQoIaMTUber-3feOyz5_ObYPvmt80-i7zdbYa2r7Jh0gh-9j63mcL27YUGoq37Kq2baS7cx2zr5fn9fw1X74v3uazZe6KouhzAWXJnSyn0pLQIAqqZU3OkUMrXVVW2toKrJzSpnK8KpXeIJIQtUg7lFUxZo-nu4fgvweKvdn5IXQp0qBOT2hUWCQVnFQu-BgD1eYQmr0NPwbBHPGYhMcc8ZgznmR5OFkaIvqXqynnWuviD20sYN4</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Sansone, Emanuele</creator><creator>Apostolidis, Konstantinos</creator><creator>Conci, Nicola</creator><creator>Boato, Giulia</creator><creator>Mezaris, Vasileios</creator><creator>De Natale, Francesco G. B.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20170601</creationdate><title>Automatic Synchronization of Multi-user Photo Galleries</title><author>Sansone, Emanuele ; Apostolidis, Konstantinos ; Conci, Nicola ; Boato, Giulia ; Mezaris, Vasileios ; De Natale, Francesco G. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-40662c5685ae49043ef5feccec1a5cd6d9aad0a58ebdc2d679b11e44f4a5815d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Artificial neural networks</topic><topic>Events</topic><topic>Feature extraction</topic><topic>Galleries</topic><topic>Markov networks</topic><topic>Media</topic><topic>Multimedia communication</topic><topic>multimedia synchronization</topic><topic>multimodal</topic><topic>Neural networks</topic><topic>Organizations</topic><topic>Pictures</topic><topic>Probabilistic logic</topic><topic>Quality assessment</topic><topic>Software reviews</topic><topic>Synchronism</topic><topic>Synchronization</topic><topic>Visualization</topic><topic>weighted graph</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sansone, Emanuele</creatorcontrib><creatorcontrib>Apostolidis, Konstantinos</creatorcontrib><creatorcontrib>Conci, Nicola</creatorcontrib><creatorcontrib>Boato, Giulia</creatorcontrib><creatorcontrib>Mezaris, Vasileios</creatorcontrib><creatorcontrib>De Natale, Francesco G. B.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on multimedia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sansone, Emanuele</au><au>Apostolidis, Konstantinos</au><au>Conci, Nicola</au><au>Boato, Giulia</au><au>Mezaris, Vasileios</au><au>De Natale, Francesco G. B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic Synchronization of Multi-user Photo Galleries</atitle><jtitle>IEEE transactions on multimedia</jtitle><stitle>TMM</stitle><date>2017-06-01</date><risdate>2017</risdate><volume>19</volume><issue>6</issue><spage>1285</spage><epage>1298</epage><pages>1285-1298</pages><issn>1520-9210</issn><eissn>1941-0077</eissn><coden>ITMUF8</coden><abstract>In this paper we address the issue of photo galleries synchronization, where pictures related to the same event are collected by different users. Existing solutions to address the problem are usually based on unrealistic assumptions, like time consistency across photo galleries, and often heavily rely on heuristics, therefore limiting the applicability to real-world scenarios. We propose a solution that achieves better generalization performance for the synchronization task compared to the available literature. The method is characterized by three stages: at first, deep convolutional neural network features are used to assess the visual similarity among the photos; then, pairs of similar photos are detected across different galleries and used to construct a graph; eventually, a probabilistic graphical model is used to estimate the temporal offset of each pair of galleries, by traversing the minimum spanning tree extracted from this graph. The experimental evaluation is conducted on four publicly available datasets covering different types of events, demonstrating the strength of our proposed method. A thorough discussion of the obtained results is provided for a critical assessment of the quality in synchronization.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TMM.2017.2655446</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1520-9210 |
ispartof | IEEE transactions on multimedia, 2017-06, Vol.19 (6), p.1285-1298 |
issn | 1520-9210 1941-0077 |
language | eng |
recordid | cdi_proquest_journals_1901491713 |
source | IEEE Electronic Library (IEL) |
subjects | Artificial neural networks Events Feature extraction Galleries Markov networks Media Multimedia communication multimedia synchronization multimodal Neural networks Organizations Pictures Probabilistic logic Quality assessment Software reviews Synchronism Synchronization Visualization weighted graph |
title | Automatic Synchronization of Multi-user Photo Galleries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T04%3A14%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20Synchronization%20of%20Multi-user%20Photo%20Galleries&rft.jtitle=IEEE%20transactions%20on%20multimedia&rft.au=Sansone,%20Emanuele&rft.date=2017-06-01&rft.volume=19&rft.issue=6&rft.spage=1285&rft.epage=1298&rft.pages=1285-1298&rft.issn=1520-9210&rft.eissn=1941-0077&rft.coden=ITMUF8&rft_id=info:doi/10.1109/TMM.2017.2655446&rft_dat=%3Cproquest_RIE%3E1901491713%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1901491713&rft_id=info:pmid/&rft_ieee_id=7822999&rfr_iscdi=true |