Super-resolving blurry multiframe images through multiframe blind deblurring using ADMM

Multiframe super resolution (MFSR) aims to reconstruct a high resolution (HR) image from a set of low resolution (LR) images. However, the MFSR is an ill-posed problem and typically computational costly. In this paper, we propose to super-resolve multiple degraded LR frames of the original scene thr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multimedia tools and applications 2017-06, Vol.76 (11), p.13563-13579
Hauptverfasser: Huangpeng, Qizi, Zeng, Xiangrong, Sun, Quan, Fan, Jun, Feng, Jing, Pan, Zhengqiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13579
container_issue 11
container_start_page 13563
container_title Multimedia tools and applications
container_volume 76
creator Huangpeng, Qizi
Zeng, Xiangrong
Sun, Quan
Fan, Jun
Feng, Jing
Pan, Zhengqiang
description Multiframe super resolution (MFSR) aims to reconstruct a high resolution (HR) image from a set of low resolution (LR) images. However, the MFSR is an ill-posed problem and typically computational costly. In this paper, we propose to super-resolve multiple degraded LR frames of the original scene through multiframe blind deblurring (MFDB). First, we propose a new MFSR forward model and reformulate the MFSR problem into a MFDB problem which is easier to be solved than the former. We further solve the MFBD problem in which, the optimization problems with respect to the unknown image and with respect to the unknown blur are efficiently addressed by the alternating direction method of multipliers (ADMM). Our approach bridges the gap between MFSR and MFBD, taking advantages of existing MFBD methods to handle MFSR. Experiments on synthetic and real images show that the proposed method is competitive and effective in terms of speed and restoration quality.
doi_str_mv 10.1007/s11042-016-3770-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1901420777</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1901420777</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-70b9af37908b719f2a200c4aaa13b67eb894f46f5f80f2003ca2a6eed07b717c3</originalsourceid><addsrcrecordid>eNp1kE9PwzAMxSMEEmPwAbhV4hywk7Zuj9P4K23iAIhjlHbJ1qlbR9Ii9duTUg67cLEtvfez5cfYNcItAtCdR4RYcMCUSyLg_QmbYEKSEwk8DbPMgFMCeM4uvN9CMCYinrDPt-5gHHfGN_V3tV9HRd0510e7rm4r6_TORNVOr42P2o1ruvXmWCnqar-KVuaXGeDOD3V2v1xesjOra2-u_vqUfTw-vM-f-eL16WU-W_BSYtpygiLXVlIOWUGYW6EFQBlrrVEWKZkiy2MbpzaxGdggyVILnRqzAgp-KuWU3Yx7D6756oxv1bbp3D6cVJgDxgKIKLhwdJWu8d4Zqw4uvOV6haCG_NSYnwqxqCE_1QdGjIw_DL8Zd7T5X-gH3g90Xg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1901420777</pqid></control><display><type>article</type><title>Super-resolving blurry multiframe images through multiframe blind deblurring using ADMM</title><source>SpringerLink Journals</source><creator>Huangpeng, Qizi ; Zeng, Xiangrong ; Sun, Quan ; Fan, Jun ; Feng, Jing ; Pan, Zhengqiang</creator><creatorcontrib>Huangpeng, Qizi ; Zeng, Xiangrong ; Sun, Quan ; Fan, Jun ; Feng, Jing ; Pan, Zhengqiang</creatorcontrib><description>Multiframe super resolution (MFSR) aims to reconstruct a high resolution (HR) image from a set of low resolution (LR) images. However, the MFSR is an ill-posed problem and typically computational costly. In this paper, we propose to super-resolve multiple degraded LR frames of the original scene through multiframe blind deblurring (MFDB). First, we propose a new MFSR forward model and reformulate the MFSR problem into a MFDB problem which is easier to be solved than the former. We further solve the MFBD problem in which, the optimization problems with respect to the unknown image and with respect to the unknown blur are efficiently addressed by the alternating direction method of multipliers (ADMM). Our approach bridges the gap between MFSR and MFBD, taking advantages of existing MFBD methods to handle MFSR. Experiments on synthetic and real images show that the proposed method is competitive and effective in terms of speed and restoration quality.</description><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-016-3770-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Computer Communication Networks ; Computer Science ; Data Structures and Information Theory ; Digital imaging ; High resolution ; Ill posed problems ; Image reconstruction ; Image resolution ; Multimedia Information Systems ; Restoration ; Special Purpose and Application-Based Systems ; Studies</subject><ispartof>Multimedia tools and applications, 2017-06, Vol.76 (11), p.13563-13579</ispartof><rights>Springer Science+Business Media New York 2016</rights><rights>Multimedia Tools and Applications is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-70b9af37908b719f2a200c4aaa13b67eb894f46f5f80f2003ca2a6eed07b717c3</citedby><cites>FETCH-LOGICAL-c316t-70b9af37908b719f2a200c4aaa13b67eb894f46f5f80f2003ca2a6eed07b717c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11042-016-3770-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11042-016-3770-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Huangpeng, Qizi</creatorcontrib><creatorcontrib>Zeng, Xiangrong</creatorcontrib><creatorcontrib>Sun, Quan</creatorcontrib><creatorcontrib>Fan, Jun</creatorcontrib><creatorcontrib>Feng, Jing</creatorcontrib><creatorcontrib>Pan, Zhengqiang</creatorcontrib><title>Super-resolving blurry multiframe images through multiframe blind deblurring using ADMM</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>Multiframe super resolution (MFSR) aims to reconstruct a high resolution (HR) image from a set of low resolution (LR) images. However, the MFSR is an ill-posed problem and typically computational costly. In this paper, we propose to super-resolve multiple degraded LR frames of the original scene through multiframe blind deblurring (MFDB). First, we propose a new MFSR forward model and reformulate the MFSR problem into a MFDB problem which is easier to be solved than the former. We further solve the MFBD problem in which, the optimization problems with respect to the unknown image and with respect to the unknown blur are efficiently addressed by the alternating direction method of multipliers (ADMM). Our approach bridges the gap between MFSR and MFBD, taking advantages of existing MFBD methods to handle MFSR. Experiments on synthetic and real images show that the proposed method is competitive and effective in terms of speed and restoration quality.</description><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Data Structures and Information Theory</subject><subject>Digital imaging</subject><subject>High resolution</subject><subject>Ill posed problems</subject><subject>Image reconstruction</subject><subject>Image resolution</subject><subject>Multimedia Information Systems</subject><subject>Restoration</subject><subject>Special Purpose and Application-Based Systems</subject><subject>Studies</subject><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kE9PwzAMxSMEEmPwAbhV4hywk7Zuj9P4K23iAIhjlHbJ1qlbR9Ii9duTUg67cLEtvfez5cfYNcItAtCdR4RYcMCUSyLg_QmbYEKSEwk8DbPMgFMCeM4uvN9CMCYinrDPt-5gHHfGN_V3tV9HRd0510e7rm4r6_TORNVOr42P2o1ruvXmWCnqar-KVuaXGeDOD3V2v1xesjOra2-u_vqUfTw-vM-f-eL16WU-W_BSYtpygiLXVlIOWUGYW6EFQBlrrVEWKZkiy2MbpzaxGdggyVILnRqzAgp-KuWU3Yx7D6756oxv1bbp3D6cVJgDxgKIKLhwdJWu8d4Zqw4uvOV6haCG_NSYnwqxqCE_1QdGjIw_DL8Zd7T5X-gH3g90Xg</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Huangpeng, Qizi</creator><creator>Zeng, Xiangrong</creator><creator>Sun, Quan</creator><creator>Fan, Jun</creator><creator>Feng, Jing</creator><creator>Pan, Zhengqiang</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20170601</creationdate><title>Super-resolving blurry multiframe images through multiframe blind deblurring using ADMM</title><author>Huangpeng, Qizi ; Zeng, Xiangrong ; Sun, Quan ; Fan, Jun ; Feng, Jing ; Pan, Zhengqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-70b9af37908b719f2a200c4aaa13b67eb894f46f5f80f2003ca2a6eed07b717c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Data Structures and Information Theory</topic><topic>Digital imaging</topic><topic>High resolution</topic><topic>Ill posed problems</topic><topic>Image reconstruction</topic><topic>Image resolution</topic><topic>Multimedia Information Systems</topic><topic>Restoration</topic><topic>Special Purpose and Application-Based Systems</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huangpeng, Qizi</creatorcontrib><creatorcontrib>Zeng, Xiangrong</creatorcontrib><creatorcontrib>Sun, Quan</creatorcontrib><creatorcontrib>Fan, Jun</creatorcontrib><creatorcontrib>Feng, Jing</creatorcontrib><creatorcontrib>Pan, Zhengqiang</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huangpeng, Qizi</au><au>Zeng, Xiangrong</au><au>Sun, Quan</au><au>Fan, Jun</au><au>Feng, Jing</au><au>Pan, Zhengqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Super-resolving blurry multiframe images through multiframe blind deblurring using ADMM</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2017-06-01</date><risdate>2017</risdate><volume>76</volume><issue>11</issue><spage>13563</spage><epage>13579</epage><pages>13563-13579</pages><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>Multiframe super resolution (MFSR) aims to reconstruct a high resolution (HR) image from a set of low resolution (LR) images. However, the MFSR is an ill-posed problem and typically computational costly. In this paper, we propose to super-resolve multiple degraded LR frames of the original scene through multiframe blind deblurring (MFDB). First, we propose a new MFSR forward model and reformulate the MFSR problem into a MFDB problem which is easier to be solved than the former. We further solve the MFBD problem in which, the optimization problems with respect to the unknown image and with respect to the unknown blur are efficiently addressed by the alternating direction method of multipliers (ADMM). Our approach bridges the gap between MFSR and MFBD, taking advantages of existing MFBD methods to handle MFSR. Experiments on synthetic and real images show that the proposed method is competitive and effective in terms of speed and restoration quality.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-016-3770-y</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1380-7501
ispartof Multimedia tools and applications, 2017-06, Vol.76 (11), p.13563-13579
issn 1380-7501
1573-7721
language eng
recordid cdi_proquest_journals_1901420777
source SpringerLink Journals
subjects Computer Communication Networks
Computer Science
Data Structures and Information Theory
Digital imaging
High resolution
Ill posed problems
Image reconstruction
Image resolution
Multimedia Information Systems
Restoration
Special Purpose and Application-Based Systems
Studies
title Super-resolving blurry multiframe images through multiframe blind deblurring using ADMM
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T16%3A11%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Super-resolving%20blurry%20multiframe%20images%20through%20multiframe%20blind%20deblurring%20using%20ADMM&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Huangpeng,%20Qizi&rft.date=2017-06-01&rft.volume=76&rft.issue=11&rft.spage=13563&rft.epage=13579&rft.pages=13563-13579&rft.issn=1380-7501&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-016-3770-y&rft_dat=%3Cproquest_cross%3E1901420777%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1901420777&rft_id=info:pmid/&rfr_iscdi=true