Boundary and inertia effects on the stability of natural convection in a vertical layer of an anisotropic Lapwood–Brinkman porous medium
The stability of natural convection in a fluid-saturated vertical anisotropic porous layer is investigated. The vertical rigid walls of the porous layer are maintained at different constant temperatures, and anisotropy in both permeability and thermal diffusivity is considered. The flow in the porou...
Gespeichert in:
Veröffentlicht in: | Acta mechanica 2017-06, Vol.228 (6), p.2269-2282 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2282 |
---|---|
container_issue | 6 |
container_start_page | 2269 |
container_title | Acta mechanica |
container_volume | 228 |
creator | Shankar, B. M. Kumar, Jai Shivakumara, I. S. |
description | The stability of natural convection in a fluid-saturated vertical anisotropic porous layer is investigated. The vertical rigid walls of the porous layer are maintained at different constant temperatures, and anisotropy in both permeability and thermal diffusivity is considered. The flow in the porous medium is described by the Lapwood–Brinkman model, and the stability of the basic flow is analysed numerically using Chebyshev collocation method. The presence of inertia is to inflict instability on the system and in the absence of which the system is always found to be stable. The mechanical and thermal anisotropies exhibit opposing contributions on the stability characteristics of the system. The mode of instability is interdependent on the values of Prandtl number and thermal anisotropy parameter, while it remains unaltered with the mechanical anisotropy parameter. The effect of increasing Prandtl and Darcy numbers shows a destabilizing effect on the system. Besides, simulations of secondary flow and energy spectrum have been analysed for various values of physical parameters at the critical state. |
doi_str_mv | 10.1007/s00707-017-1831-6 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_1901162532</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A528615351</galeid><sourcerecordid>A528615351</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-6411d16ac2a1baad19c6a4f4171dee73eabd6c2a6109c230f670241825d689a3</originalsourceid><addsrcrecordid>eNp1kc1u3SAQha2qkXqb5AG6Q-raKYNtsJdJ1D_pStlkj-byk5La4IKd6u66zjZv2CfpXLmLbiokEHPOBwynqt4BvwLO1YdCE1c1B1VD30AtX1U7kDDUcmjU62rHOYe6GxR_U70t5ZF2QrWwq55v0hot5iPDaFmILi8BmfPemaWwFNnyzbGy4CGMYTmy5FnEZc04MpPiE5kCeUJkyJ5OqCFhxKPLJydSOYaSlpzmYNge558p2d-_Xm5yiN8nkueU01rY5GxYp4vqzONY3OXf9by6__Tx_vZLvb_7_PX2el-bZuiXWrYAFiQagXBAtDAYia1vQYF1TjUOD1aSKIEPRjTcS8VFC73orOwHbM6r99uxc04_VlcW_ZjWHOlGDQMHkKJrBLmuNtcDjk6H6KkLNDSsmwK17nyg-nUnegld0wEBsAEmp1Ky83rOYaKP1cD1KSK9RaQpIn2KSEtixMYU8sYHl_95yn-hP6c_lrc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1901162532</pqid></control><display><type>article</type><title>Boundary and inertia effects on the stability of natural convection in a vertical layer of an anisotropic Lapwood–Brinkman porous medium</title><source>SpringerLink Journals - AutoHoldings</source><creator>Shankar, B. M. ; Kumar, Jai ; Shivakumara, I. S.</creator><creatorcontrib>Shankar, B. M. ; Kumar, Jai ; Shivakumara, I. S.</creatorcontrib><description>The stability of natural convection in a fluid-saturated vertical anisotropic porous layer is investigated. The vertical rigid walls of the porous layer are maintained at different constant temperatures, and anisotropy in both permeability and thermal diffusivity is considered. The flow in the porous medium is described by the Lapwood–Brinkman model, and the stability of the basic flow is analysed numerically using Chebyshev collocation method. The presence of inertia is to inflict instability on the system and in the absence of which the system is always found to be stable. The mechanical and thermal anisotropies exhibit opposing contributions on the stability characteristics of the system. The mode of instability is interdependent on the values of Prandtl number and thermal anisotropy parameter, while it remains unaltered with the mechanical anisotropy parameter. The effect of increasing Prandtl and Darcy numbers shows a destabilizing effect on the system. Besides, simulations of secondary flow and energy spectrum have been analysed for various values of physical parameters at the critical state.</description><identifier>ISSN: 0001-5970</identifier><identifier>EISSN: 1619-6937</identifier><identifier>DOI: 10.1007/s00707-017-1831-6</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Analysis ; Anisotropy ; Boundary layer ; Brinkman model ; Chebyshev approximation ; Classical and Continuum Physics ; Collocation methods ; Control ; Dynamical Systems ; Energy spectra ; Engineering ; Engineering Thermodynamics ; Flow stability ; Free convection ; Heat and Mass Transfer ; Inertia ; Nuclear energy ; Original Paper ; Parameters ; Permeability ; Physical properties ; Porous materials ; Porous media ; Prandtl number ; Rigid walls ; Secondary flow ; Solid Mechanics ; Stability analysis ; Theoretical and Applied Mechanics ; Thermal diffusivity ; Thermal properties ; Vibration ; Viscosity</subject><ispartof>Acta mechanica, 2017-06, Vol.228 (6), p.2269-2282</ispartof><rights>Springer-Verlag Wien 2017</rights><rights>COPYRIGHT 2017 Springer</rights><rights>Acta Mechanica is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-6411d16ac2a1baad19c6a4f4171dee73eabd6c2a6109c230f670241825d689a3</citedby><cites>FETCH-LOGICAL-c398t-6411d16ac2a1baad19c6a4f4171dee73eabd6c2a6109c230f670241825d689a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00707-017-1831-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00707-017-1831-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Shankar, B. M.</creatorcontrib><creatorcontrib>Kumar, Jai</creatorcontrib><creatorcontrib>Shivakumara, I. S.</creatorcontrib><title>Boundary and inertia effects on the stability of natural convection in a vertical layer of an anisotropic Lapwood–Brinkman porous medium</title><title>Acta mechanica</title><addtitle>Acta Mech</addtitle><description>The stability of natural convection in a fluid-saturated vertical anisotropic porous layer is investigated. The vertical rigid walls of the porous layer are maintained at different constant temperatures, and anisotropy in both permeability and thermal diffusivity is considered. The flow in the porous medium is described by the Lapwood–Brinkman model, and the stability of the basic flow is analysed numerically using Chebyshev collocation method. The presence of inertia is to inflict instability on the system and in the absence of which the system is always found to be stable. The mechanical and thermal anisotropies exhibit opposing contributions on the stability characteristics of the system. The mode of instability is interdependent on the values of Prandtl number and thermal anisotropy parameter, while it remains unaltered with the mechanical anisotropy parameter. The effect of increasing Prandtl and Darcy numbers shows a destabilizing effect on the system. Besides, simulations of secondary flow and energy spectrum have been analysed for various values of physical parameters at the critical state.</description><subject>Analysis</subject><subject>Anisotropy</subject><subject>Boundary layer</subject><subject>Brinkman model</subject><subject>Chebyshev approximation</subject><subject>Classical and Continuum Physics</subject><subject>Collocation methods</subject><subject>Control</subject><subject>Dynamical Systems</subject><subject>Energy spectra</subject><subject>Engineering</subject><subject>Engineering Thermodynamics</subject><subject>Flow stability</subject><subject>Free convection</subject><subject>Heat and Mass Transfer</subject><subject>Inertia</subject><subject>Nuclear energy</subject><subject>Original Paper</subject><subject>Parameters</subject><subject>Permeability</subject><subject>Physical properties</subject><subject>Porous materials</subject><subject>Porous media</subject><subject>Prandtl number</subject><subject>Rigid walls</subject><subject>Secondary flow</subject><subject>Solid Mechanics</subject><subject>Stability analysis</subject><subject>Theoretical and Applied Mechanics</subject><subject>Thermal diffusivity</subject><subject>Thermal properties</subject><subject>Vibration</subject><subject>Viscosity</subject><issn>0001-5970</issn><issn>1619-6937</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kc1u3SAQha2qkXqb5AG6Q-raKYNtsJdJ1D_pStlkj-byk5La4IKd6u66zjZv2CfpXLmLbiokEHPOBwynqt4BvwLO1YdCE1c1B1VD30AtX1U7kDDUcmjU62rHOYe6GxR_U70t5ZF2QrWwq55v0hot5iPDaFmILi8BmfPemaWwFNnyzbGy4CGMYTmy5FnEZc04MpPiE5kCeUJkyJ5OqCFhxKPLJydSOYaSlpzmYNge558p2d-_Xm5yiN8nkueU01rY5GxYp4vqzONY3OXf9by6__Tx_vZLvb_7_PX2el-bZuiXWrYAFiQagXBAtDAYia1vQYF1TjUOD1aSKIEPRjTcS8VFC73orOwHbM6r99uxc04_VlcW_ZjWHOlGDQMHkKJrBLmuNtcDjk6H6KkLNDSsmwK17nyg-nUnegld0wEBsAEmp1Ky83rOYaKP1cD1KSK9RaQpIn2KSEtixMYU8sYHl_95yn-hP6c_lrc</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Shankar, B. M.</creator><creator>Kumar, Jai</creator><creator>Shivakumara, I. S.</creator><general>Springer Vienna</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20170601</creationdate><title>Boundary and inertia effects on the stability of natural convection in a vertical layer of an anisotropic Lapwood–Brinkman porous medium</title><author>Shankar, B. M. ; Kumar, Jai ; Shivakumara, I. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-6411d16ac2a1baad19c6a4f4171dee73eabd6c2a6109c230f670241825d689a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Analysis</topic><topic>Anisotropy</topic><topic>Boundary layer</topic><topic>Brinkman model</topic><topic>Chebyshev approximation</topic><topic>Classical and Continuum Physics</topic><topic>Collocation methods</topic><topic>Control</topic><topic>Dynamical Systems</topic><topic>Energy spectra</topic><topic>Engineering</topic><topic>Engineering Thermodynamics</topic><topic>Flow stability</topic><topic>Free convection</topic><topic>Heat and Mass Transfer</topic><topic>Inertia</topic><topic>Nuclear energy</topic><topic>Original Paper</topic><topic>Parameters</topic><topic>Permeability</topic><topic>Physical properties</topic><topic>Porous materials</topic><topic>Porous media</topic><topic>Prandtl number</topic><topic>Rigid walls</topic><topic>Secondary flow</topic><topic>Solid Mechanics</topic><topic>Stability analysis</topic><topic>Theoretical and Applied Mechanics</topic><topic>Thermal diffusivity</topic><topic>Thermal properties</topic><topic>Vibration</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shankar, B. M.</creatorcontrib><creatorcontrib>Kumar, Jai</creatorcontrib><creatorcontrib>Shivakumara, I. S.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Acta mechanica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shankar, B. M.</au><au>Kumar, Jai</au><au>Shivakumara, I. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boundary and inertia effects on the stability of natural convection in a vertical layer of an anisotropic Lapwood–Brinkman porous medium</atitle><jtitle>Acta mechanica</jtitle><stitle>Acta Mech</stitle><date>2017-06-01</date><risdate>2017</risdate><volume>228</volume><issue>6</issue><spage>2269</spage><epage>2282</epage><pages>2269-2282</pages><issn>0001-5970</issn><eissn>1619-6937</eissn><abstract>The stability of natural convection in a fluid-saturated vertical anisotropic porous layer is investigated. The vertical rigid walls of the porous layer are maintained at different constant temperatures, and anisotropy in both permeability and thermal diffusivity is considered. The flow in the porous medium is described by the Lapwood–Brinkman model, and the stability of the basic flow is analysed numerically using Chebyshev collocation method. The presence of inertia is to inflict instability on the system and in the absence of which the system is always found to be stable. The mechanical and thermal anisotropies exhibit opposing contributions on the stability characteristics of the system. The mode of instability is interdependent on the values of Prandtl number and thermal anisotropy parameter, while it remains unaltered with the mechanical anisotropy parameter. The effect of increasing Prandtl and Darcy numbers shows a destabilizing effect on the system. Besides, simulations of secondary flow and energy spectrum have been analysed for various values of physical parameters at the critical state.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00707-017-1831-6</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-5970 |
ispartof | Acta mechanica, 2017-06, Vol.228 (6), p.2269-2282 |
issn | 0001-5970 1619-6937 |
language | eng |
recordid | cdi_proquest_journals_1901162532 |
source | SpringerLink Journals - AutoHoldings |
subjects | Analysis Anisotropy Boundary layer Brinkman model Chebyshev approximation Classical and Continuum Physics Collocation methods Control Dynamical Systems Energy spectra Engineering Engineering Thermodynamics Flow stability Free convection Heat and Mass Transfer Inertia Nuclear energy Original Paper Parameters Permeability Physical properties Porous materials Porous media Prandtl number Rigid walls Secondary flow Solid Mechanics Stability analysis Theoretical and Applied Mechanics Thermal diffusivity Thermal properties Vibration Viscosity |
title | Boundary and inertia effects on the stability of natural convection in a vertical layer of an anisotropic Lapwood–Brinkman porous medium |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A56%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boundary%20and%20inertia%20effects%20on%20the%20stability%20of%20natural%20convection%20in%20a%20vertical%20layer%20of%20an%20anisotropic%20Lapwood%E2%80%93Brinkman%20porous%20medium&rft.jtitle=Acta%20mechanica&rft.au=Shankar,%20B.%20M.&rft.date=2017-06-01&rft.volume=228&rft.issue=6&rft.spage=2269&rft.epage=2282&rft.pages=2269-2282&rft.issn=0001-5970&rft.eissn=1619-6937&rft_id=info:doi/10.1007/s00707-017-1831-6&rft_dat=%3Cgale_proqu%3EA528615351%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1901162532&rft_id=info:pmid/&rft_galeid=A528615351&rfr_iscdi=true |