Boundary and inertia effects on the stability of natural convection in a vertical layer of an anisotropic Lapwood–Brinkman porous medium

The stability of natural convection in a fluid-saturated vertical anisotropic porous layer is investigated. The vertical rigid walls of the porous layer are maintained at different constant temperatures, and anisotropy in both permeability and thermal diffusivity is considered. The flow in the porou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mechanica 2017-06, Vol.228 (6), p.2269-2282
Hauptverfasser: Shankar, B. M., Kumar, Jai, Shivakumara, I. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2282
container_issue 6
container_start_page 2269
container_title Acta mechanica
container_volume 228
creator Shankar, B. M.
Kumar, Jai
Shivakumara, I. S.
description The stability of natural convection in a fluid-saturated vertical anisotropic porous layer is investigated. The vertical rigid walls of the porous layer are maintained at different constant temperatures, and anisotropy in both permeability and thermal diffusivity is considered. The flow in the porous medium is described by the Lapwood–Brinkman model, and the stability of the basic flow is analysed numerically using Chebyshev collocation method. The presence of inertia is to inflict instability on the system and in the absence of which the system is always found to be stable. The mechanical and thermal anisotropies exhibit opposing contributions on the stability characteristics of the system. The mode of instability is interdependent on the values of Prandtl number and thermal anisotropy parameter, while it remains unaltered with the mechanical anisotropy parameter. The effect of increasing Prandtl and Darcy numbers shows a destabilizing effect on the system. Besides, simulations of secondary flow and energy spectrum have been analysed for various values of physical parameters at the critical state.
doi_str_mv 10.1007/s00707-017-1831-6
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_1901162532</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A528615351</galeid><sourcerecordid>A528615351</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-6411d16ac2a1baad19c6a4f4171dee73eabd6c2a6109c230f670241825d689a3</originalsourceid><addsrcrecordid>eNp1kc1u3SAQha2qkXqb5AG6Q-raKYNtsJdJ1D_pStlkj-byk5La4IKd6u66zjZv2CfpXLmLbiokEHPOBwynqt4BvwLO1YdCE1c1B1VD30AtX1U7kDDUcmjU62rHOYe6GxR_U70t5ZF2QrWwq55v0hot5iPDaFmILi8BmfPemaWwFNnyzbGy4CGMYTmy5FnEZc04MpPiE5kCeUJkyJ5OqCFhxKPLJydSOYaSlpzmYNge558p2d-_Xm5yiN8nkueU01rY5GxYp4vqzONY3OXf9by6__Tx_vZLvb_7_PX2el-bZuiXWrYAFiQagXBAtDAYia1vQYF1TjUOD1aSKIEPRjTcS8VFC73orOwHbM6r99uxc04_VlcW_ZjWHOlGDQMHkKJrBLmuNtcDjk6H6KkLNDSsmwK17nyg-nUnegld0wEBsAEmp1Ky83rOYaKP1cD1KSK9RaQpIn2KSEtixMYU8sYHl_95yn-hP6c_lrc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1901162532</pqid></control><display><type>article</type><title>Boundary and inertia effects on the stability of natural convection in a vertical layer of an anisotropic Lapwood–Brinkman porous medium</title><source>SpringerLink Journals - AutoHoldings</source><creator>Shankar, B. M. ; Kumar, Jai ; Shivakumara, I. S.</creator><creatorcontrib>Shankar, B. M. ; Kumar, Jai ; Shivakumara, I. S.</creatorcontrib><description>The stability of natural convection in a fluid-saturated vertical anisotropic porous layer is investigated. The vertical rigid walls of the porous layer are maintained at different constant temperatures, and anisotropy in both permeability and thermal diffusivity is considered. The flow in the porous medium is described by the Lapwood–Brinkman model, and the stability of the basic flow is analysed numerically using Chebyshev collocation method. The presence of inertia is to inflict instability on the system and in the absence of which the system is always found to be stable. The mechanical and thermal anisotropies exhibit opposing contributions on the stability characteristics of the system. The mode of instability is interdependent on the values of Prandtl number and thermal anisotropy parameter, while it remains unaltered with the mechanical anisotropy parameter. The effect of increasing Prandtl and Darcy numbers shows a destabilizing effect on the system. Besides, simulations of secondary flow and energy spectrum have been analysed for various values of physical parameters at the critical state.</description><identifier>ISSN: 0001-5970</identifier><identifier>EISSN: 1619-6937</identifier><identifier>DOI: 10.1007/s00707-017-1831-6</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Analysis ; Anisotropy ; Boundary layer ; Brinkman model ; Chebyshev approximation ; Classical and Continuum Physics ; Collocation methods ; Control ; Dynamical Systems ; Energy spectra ; Engineering ; Engineering Thermodynamics ; Flow stability ; Free convection ; Heat and Mass Transfer ; Inertia ; Nuclear energy ; Original Paper ; Parameters ; Permeability ; Physical properties ; Porous materials ; Porous media ; Prandtl number ; Rigid walls ; Secondary flow ; Solid Mechanics ; Stability analysis ; Theoretical and Applied Mechanics ; Thermal diffusivity ; Thermal properties ; Vibration ; Viscosity</subject><ispartof>Acta mechanica, 2017-06, Vol.228 (6), p.2269-2282</ispartof><rights>Springer-Verlag Wien 2017</rights><rights>COPYRIGHT 2017 Springer</rights><rights>Acta Mechanica is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-6411d16ac2a1baad19c6a4f4171dee73eabd6c2a6109c230f670241825d689a3</citedby><cites>FETCH-LOGICAL-c398t-6411d16ac2a1baad19c6a4f4171dee73eabd6c2a6109c230f670241825d689a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00707-017-1831-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00707-017-1831-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Shankar, B. M.</creatorcontrib><creatorcontrib>Kumar, Jai</creatorcontrib><creatorcontrib>Shivakumara, I. S.</creatorcontrib><title>Boundary and inertia effects on the stability of natural convection in a vertical layer of an anisotropic Lapwood–Brinkman porous medium</title><title>Acta mechanica</title><addtitle>Acta Mech</addtitle><description>The stability of natural convection in a fluid-saturated vertical anisotropic porous layer is investigated. The vertical rigid walls of the porous layer are maintained at different constant temperatures, and anisotropy in both permeability and thermal diffusivity is considered. The flow in the porous medium is described by the Lapwood–Brinkman model, and the stability of the basic flow is analysed numerically using Chebyshev collocation method. The presence of inertia is to inflict instability on the system and in the absence of which the system is always found to be stable. The mechanical and thermal anisotropies exhibit opposing contributions on the stability characteristics of the system. The mode of instability is interdependent on the values of Prandtl number and thermal anisotropy parameter, while it remains unaltered with the mechanical anisotropy parameter. The effect of increasing Prandtl and Darcy numbers shows a destabilizing effect on the system. Besides, simulations of secondary flow and energy spectrum have been analysed for various values of physical parameters at the critical state.</description><subject>Analysis</subject><subject>Anisotropy</subject><subject>Boundary layer</subject><subject>Brinkman model</subject><subject>Chebyshev approximation</subject><subject>Classical and Continuum Physics</subject><subject>Collocation methods</subject><subject>Control</subject><subject>Dynamical Systems</subject><subject>Energy spectra</subject><subject>Engineering</subject><subject>Engineering Thermodynamics</subject><subject>Flow stability</subject><subject>Free convection</subject><subject>Heat and Mass Transfer</subject><subject>Inertia</subject><subject>Nuclear energy</subject><subject>Original Paper</subject><subject>Parameters</subject><subject>Permeability</subject><subject>Physical properties</subject><subject>Porous materials</subject><subject>Porous media</subject><subject>Prandtl number</subject><subject>Rigid walls</subject><subject>Secondary flow</subject><subject>Solid Mechanics</subject><subject>Stability analysis</subject><subject>Theoretical and Applied Mechanics</subject><subject>Thermal diffusivity</subject><subject>Thermal properties</subject><subject>Vibration</subject><subject>Viscosity</subject><issn>0001-5970</issn><issn>1619-6937</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kc1u3SAQha2qkXqb5AG6Q-raKYNtsJdJ1D_pStlkj-byk5La4IKd6u66zjZv2CfpXLmLbiokEHPOBwynqt4BvwLO1YdCE1c1B1VD30AtX1U7kDDUcmjU62rHOYe6GxR_U70t5ZF2QrWwq55v0hot5iPDaFmILi8BmfPemaWwFNnyzbGy4CGMYTmy5FnEZc04MpPiE5kCeUJkyJ5OqCFhxKPLJydSOYaSlpzmYNge558p2d-_Xm5yiN8nkueU01rY5GxYp4vqzONY3OXf9by6__Tx_vZLvb_7_PX2el-bZuiXWrYAFiQagXBAtDAYia1vQYF1TjUOD1aSKIEPRjTcS8VFC73orOwHbM6r99uxc04_VlcW_ZjWHOlGDQMHkKJrBLmuNtcDjk6H6KkLNDSsmwK17nyg-nUnegld0wEBsAEmp1Ky83rOYaKP1cD1KSK9RaQpIn2KSEtixMYU8sYHl_95yn-hP6c_lrc</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Shankar, B. M.</creator><creator>Kumar, Jai</creator><creator>Shivakumara, I. S.</creator><general>Springer Vienna</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20170601</creationdate><title>Boundary and inertia effects on the stability of natural convection in a vertical layer of an anisotropic Lapwood–Brinkman porous medium</title><author>Shankar, B. M. ; Kumar, Jai ; Shivakumara, I. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-6411d16ac2a1baad19c6a4f4171dee73eabd6c2a6109c230f670241825d689a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Analysis</topic><topic>Anisotropy</topic><topic>Boundary layer</topic><topic>Brinkman model</topic><topic>Chebyshev approximation</topic><topic>Classical and Continuum Physics</topic><topic>Collocation methods</topic><topic>Control</topic><topic>Dynamical Systems</topic><topic>Energy spectra</topic><topic>Engineering</topic><topic>Engineering Thermodynamics</topic><topic>Flow stability</topic><topic>Free convection</topic><topic>Heat and Mass Transfer</topic><topic>Inertia</topic><topic>Nuclear energy</topic><topic>Original Paper</topic><topic>Parameters</topic><topic>Permeability</topic><topic>Physical properties</topic><topic>Porous materials</topic><topic>Porous media</topic><topic>Prandtl number</topic><topic>Rigid walls</topic><topic>Secondary flow</topic><topic>Solid Mechanics</topic><topic>Stability analysis</topic><topic>Theoretical and Applied Mechanics</topic><topic>Thermal diffusivity</topic><topic>Thermal properties</topic><topic>Vibration</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shankar, B. M.</creatorcontrib><creatorcontrib>Kumar, Jai</creatorcontrib><creatorcontrib>Shivakumara, I. S.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Acta mechanica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shankar, B. M.</au><au>Kumar, Jai</au><au>Shivakumara, I. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boundary and inertia effects on the stability of natural convection in a vertical layer of an anisotropic Lapwood–Brinkman porous medium</atitle><jtitle>Acta mechanica</jtitle><stitle>Acta Mech</stitle><date>2017-06-01</date><risdate>2017</risdate><volume>228</volume><issue>6</issue><spage>2269</spage><epage>2282</epage><pages>2269-2282</pages><issn>0001-5970</issn><eissn>1619-6937</eissn><abstract>The stability of natural convection in a fluid-saturated vertical anisotropic porous layer is investigated. The vertical rigid walls of the porous layer are maintained at different constant temperatures, and anisotropy in both permeability and thermal diffusivity is considered. The flow in the porous medium is described by the Lapwood–Brinkman model, and the stability of the basic flow is analysed numerically using Chebyshev collocation method. The presence of inertia is to inflict instability on the system and in the absence of which the system is always found to be stable. The mechanical and thermal anisotropies exhibit opposing contributions on the stability characteristics of the system. The mode of instability is interdependent on the values of Prandtl number and thermal anisotropy parameter, while it remains unaltered with the mechanical anisotropy parameter. The effect of increasing Prandtl and Darcy numbers shows a destabilizing effect on the system. Besides, simulations of secondary flow and energy spectrum have been analysed for various values of physical parameters at the critical state.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00707-017-1831-6</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0001-5970
ispartof Acta mechanica, 2017-06, Vol.228 (6), p.2269-2282
issn 0001-5970
1619-6937
language eng
recordid cdi_proquest_journals_1901162532
source SpringerLink Journals - AutoHoldings
subjects Analysis
Anisotropy
Boundary layer
Brinkman model
Chebyshev approximation
Classical and Continuum Physics
Collocation methods
Control
Dynamical Systems
Energy spectra
Engineering
Engineering Thermodynamics
Flow stability
Free convection
Heat and Mass Transfer
Inertia
Nuclear energy
Original Paper
Parameters
Permeability
Physical properties
Porous materials
Porous media
Prandtl number
Rigid walls
Secondary flow
Solid Mechanics
Stability analysis
Theoretical and Applied Mechanics
Thermal diffusivity
Thermal properties
Vibration
Viscosity
title Boundary and inertia effects on the stability of natural convection in a vertical layer of an anisotropic Lapwood–Brinkman porous medium
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A56%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boundary%20and%20inertia%20effects%20on%20the%20stability%20of%20natural%20convection%20in%20a%20vertical%20layer%20of%20an%20anisotropic%20Lapwood%E2%80%93Brinkman%20porous%20medium&rft.jtitle=Acta%20mechanica&rft.au=Shankar,%20B.%20M.&rft.date=2017-06-01&rft.volume=228&rft.issue=6&rft.spage=2269&rft.epage=2282&rft.pages=2269-2282&rft.issn=0001-5970&rft.eissn=1619-6937&rft_id=info:doi/10.1007/s00707-017-1831-6&rft_dat=%3Cgale_proqu%3EA528615351%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1901162532&rft_id=info:pmid/&rft_galeid=A528615351&rfr_iscdi=true