Heterogeneous distribution of H2O in the Martian interior: Implications for the abundance of H2O in depleted and enriched mantle sources

We conducted a petrologic study of apatite within 12 Martian meteorites, including 11 shergottites and one basaltic regolith breccia. These data were combined with previously published data to gain a better understanding of the abundance and distribution of volatiles in the Martian interior. Apatite...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Meteoritics & planetary science 2016-11, Vol.51 (11), p.2036-2060
Hauptverfasser: McCubbin, Francis M., Boyce, Jeremy W., Srinivasan, Poorna, Santos, Alison R., Elardo, Stephen M., Filiberto, Justin, Steele, Andrew, Shearer, Charles K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2060
container_issue 11
container_start_page 2036
container_title Meteoritics & planetary science
container_volume 51
creator McCubbin, Francis M.
Boyce, Jeremy W.
Srinivasan, Poorna
Santos, Alison R.
Elardo, Stephen M.
Filiberto, Justin
Steele, Andrew
Shearer, Charles K.
description We conducted a petrologic study of apatite within 12 Martian meteorites, including 11 shergottites and one basaltic regolith breccia. These data were combined with previously published data to gain a better understanding of the abundance and distribution of volatiles in the Martian interior. Apatites in individual Martian meteorites span a wide range of compositions, indicating they did not form by equilibrium crystallization. In fact, the intrasample variation in apatite is best described by either fractional crystallization or crustal contamination with a Cl‐rich crustal component. We determined that most Martian meteorites investigated here have been affected by crustal contamination and hence cannot be used to estimate volatile abundances of the Martian mantle. Using the subset of samples that did not exhibit crustal contamination, we determined that the enriched shergottite source has 36–73 ppm H2O and the depleted source has 14–23 ppm H2O. This result is consistent with other observed geochemical differences between enriched and depleted shergottites and supports the idea that there are at least two geochemically distinct reservoirs in the Martian mantle. We also estimated the H2O, Cl, and F content of the Martian crust using known crust‐mantle distributions for incompatible lithophile elements. We determined that the bulk Martian crust has ~1410 ppm H2O, 450 ppm Cl, and 106 ppm F, and Cl and H2O are preferentially distributed toward the Martian surface. The estimate of crustal H2O results in a global equivalent surface layer (GEL) of ~229 m, which can account for at least some of the surface features on Mars attributed to flowing water and may be sufficient to support the past presence of a shallow sea on Mars' surface.
doi_str_mv 10.1111/maps.12639
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_1900731055</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1900731055</sourcerecordid><originalsourceid>FETCH-LOGICAL-i3939-d1f191b16524d8fab49e27a953454b60130991926b966f8d320b44e696b2e41a3</originalsourceid><addsrcrecordid>eNp9kdtKxDAQhosoeLzxCQJeVzPNoY13sh5W2FVBRe9Cup1qtJvWpEV9Ax_b7K6IV-YmM_B9mSF_kuwDPYR4juamC4eQSabWki1QXKQCKF2PNS1kqliuNpPtEF4oZQIY30q-xtijb5_QYTsEUtnQe1sOvW0daWsyzq6JdaR_RjI1vrfGxTYKtvXH5HLeNXZmFmwgdeuXmCkHVxk3wz96hV0Tx1TEuIqg83b2HJu5cX2DJLSDn2HYTTZq0wTc-7l3kvvzs7vROJ1cX1yOTiapZYqptIIaFJQgRcarojYlV5jlRgnGBS8lBUaVApXJUklZFxXLaMk5SiXLDDkYtpMcrN7tfPs2YOj1S1zAxZEaFKU5AyrEv1TBcsi4LCBSsKLebYOfuvN2bvynBqoXYehFGHoZhp6e3Nwuq-ikKyf-NH78Osa_apmzXOiHqwtdnMOIPZ7easm-ASD8jXc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1837124681</pqid></control><display><type>article</type><title>Heterogeneous distribution of H2O in the Martian interior: Implications for the abundance of H2O in depleted and enriched mantle sources</title><source>Wiley Free Content</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>McCubbin, Francis M. ; Boyce, Jeremy W. ; Srinivasan, Poorna ; Santos, Alison R. ; Elardo, Stephen M. ; Filiberto, Justin ; Steele, Andrew ; Shearer, Charles K.</creator><creatorcontrib>McCubbin, Francis M. ; Boyce, Jeremy W. ; Srinivasan, Poorna ; Santos, Alison R. ; Elardo, Stephen M. ; Filiberto, Justin ; Steele, Andrew ; Shearer, Charles K.</creatorcontrib><description>We conducted a petrologic study of apatite within 12 Martian meteorites, including 11 shergottites and one basaltic regolith breccia. These data were combined with previously published data to gain a better understanding of the abundance and distribution of volatiles in the Martian interior. Apatites in individual Martian meteorites span a wide range of compositions, indicating they did not form by equilibrium crystallization. In fact, the intrasample variation in apatite is best described by either fractional crystallization or crustal contamination with a Cl‐rich crustal component. We determined that most Martian meteorites investigated here have been affected by crustal contamination and hence cannot be used to estimate volatile abundances of the Martian mantle. Using the subset of samples that did not exhibit crustal contamination, we determined that the enriched shergottite source has 36–73 ppm H2O and the depleted source has 14–23 ppm H2O. This result is consistent with other observed geochemical differences between enriched and depleted shergottites and supports the idea that there are at least two geochemically distinct reservoirs in the Martian mantle. We also estimated the H2O, Cl, and F content of the Martian crust using known crust‐mantle distributions for incompatible lithophile elements. We determined that the bulk Martian crust has ~1410 ppm H2O, 450 ppm Cl, and 106 ppm F, and Cl and H2O are preferentially distributed toward the Martian surface. The estimate of crustal H2O results in a global equivalent surface layer (GEL) of ~229 m, which can account for at least some of the surface features on Mars attributed to flowing water and may be sufficient to support the past presence of a shallow sea on Mars' surface.</description><identifier>ISSN: 1086-9379</identifier><identifier>EISSN: 1945-5100</identifier><identifier>DOI: 10.1111/maps.12639</identifier><identifier>CODEN: MPSCFY</identifier><language>eng</language><publisher>Hoboken: Blackwell Publishing Ltd</publisher><subject>Abundance ; Apatite ; Breccia ; Contamination ; Crystallization ; Depletion ; Enrichment ; Fractional crystallization ; Geochemistry ; Magma ; Mars ; Mars surface ; Meteors &amp; meteorites ; Planetary interiors ; Planetary mantles ; Regolith ; Shergottites ; SNC meteorites ; Surface boundary layer</subject><ispartof>Meteoritics &amp; planetary science, 2016-11, Vol.51 (11), p.2036-2060</ispartof><rights>Published 2016. This article is a U.S. Government work and is in the public domain in the USA.</rights><rights>Copyright © 2016 The Meteoritical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fmaps.12639$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fmaps.12639$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids></links><search><creatorcontrib>McCubbin, Francis M.</creatorcontrib><creatorcontrib>Boyce, Jeremy W.</creatorcontrib><creatorcontrib>Srinivasan, Poorna</creatorcontrib><creatorcontrib>Santos, Alison R.</creatorcontrib><creatorcontrib>Elardo, Stephen M.</creatorcontrib><creatorcontrib>Filiberto, Justin</creatorcontrib><creatorcontrib>Steele, Andrew</creatorcontrib><creatorcontrib>Shearer, Charles K.</creatorcontrib><title>Heterogeneous distribution of H2O in the Martian interior: Implications for the abundance of H2O in depleted and enriched mantle sources</title><title>Meteoritics &amp; planetary science</title><addtitle>Meteorit Planet Sci</addtitle><description>We conducted a petrologic study of apatite within 12 Martian meteorites, including 11 shergottites and one basaltic regolith breccia. These data were combined with previously published data to gain a better understanding of the abundance and distribution of volatiles in the Martian interior. Apatites in individual Martian meteorites span a wide range of compositions, indicating they did not form by equilibrium crystallization. In fact, the intrasample variation in apatite is best described by either fractional crystallization or crustal contamination with a Cl‐rich crustal component. We determined that most Martian meteorites investigated here have been affected by crustal contamination and hence cannot be used to estimate volatile abundances of the Martian mantle. Using the subset of samples that did not exhibit crustal contamination, we determined that the enriched shergottite source has 36–73 ppm H2O and the depleted source has 14–23 ppm H2O. This result is consistent with other observed geochemical differences between enriched and depleted shergottites and supports the idea that there are at least two geochemically distinct reservoirs in the Martian mantle. We also estimated the H2O, Cl, and F content of the Martian crust using known crust‐mantle distributions for incompatible lithophile elements. We determined that the bulk Martian crust has ~1410 ppm H2O, 450 ppm Cl, and 106 ppm F, and Cl and H2O are preferentially distributed toward the Martian surface. The estimate of crustal H2O results in a global equivalent surface layer (GEL) of ~229 m, which can account for at least some of the surface features on Mars attributed to flowing water and may be sufficient to support the past presence of a shallow sea on Mars' surface.</description><subject>Abundance</subject><subject>Apatite</subject><subject>Breccia</subject><subject>Contamination</subject><subject>Crystallization</subject><subject>Depletion</subject><subject>Enrichment</subject><subject>Fractional crystallization</subject><subject>Geochemistry</subject><subject>Magma</subject><subject>Mars</subject><subject>Mars surface</subject><subject>Meteors &amp; meteorites</subject><subject>Planetary interiors</subject><subject>Planetary mantles</subject><subject>Regolith</subject><subject>Shergottites</subject><subject>SNC meteorites</subject><subject>Surface boundary layer</subject><issn>1086-9379</issn><issn>1945-5100</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kdtKxDAQhosoeLzxCQJeVzPNoY13sh5W2FVBRe9Cup1qtJvWpEV9Ax_b7K6IV-YmM_B9mSF_kuwDPYR4juamC4eQSabWki1QXKQCKF2PNS1kqliuNpPtEF4oZQIY30q-xtijb5_QYTsEUtnQe1sOvW0daWsyzq6JdaR_RjI1vrfGxTYKtvXH5HLeNXZmFmwgdeuXmCkHVxk3wz96hV0Tx1TEuIqg83b2HJu5cX2DJLSDn2HYTTZq0wTc-7l3kvvzs7vROJ1cX1yOTiapZYqptIIaFJQgRcarojYlV5jlRgnGBS8lBUaVApXJUklZFxXLaMk5SiXLDDkYtpMcrN7tfPs2YOj1S1zAxZEaFKU5AyrEv1TBcsi4LCBSsKLebYOfuvN2bvynBqoXYehFGHoZhp6e3Nwuq-ikKyf-NH78Osa_apmzXOiHqwtdnMOIPZ7easm-ASD8jXc</recordid><startdate>201611</startdate><enddate>201611</enddate><creator>McCubbin, Francis M.</creator><creator>Boyce, Jeremy W.</creator><creator>Srinivasan, Poorna</creator><creator>Santos, Alison R.</creator><creator>Elardo, Stephen M.</creator><creator>Filiberto, Justin</creator><creator>Steele, Andrew</creator><creator>Shearer, Charles K.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope></search><sort><creationdate>201611</creationdate><title>Heterogeneous distribution of H2O in the Martian interior: Implications for the abundance of H2O in depleted and enriched mantle sources</title><author>McCubbin, Francis M. ; Boyce, Jeremy W. ; Srinivasan, Poorna ; Santos, Alison R. ; Elardo, Stephen M. ; Filiberto, Justin ; Steele, Andrew ; Shearer, Charles K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i3939-d1f191b16524d8fab49e27a953454b60130991926b966f8d320b44e696b2e41a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Abundance</topic><topic>Apatite</topic><topic>Breccia</topic><topic>Contamination</topic><topic>Crystallization</topic><topic>Depletion</topic><topic>Enrichment</topic><topic>Fractional crystallization</topic><topic>Geochemistry</topic><topic>Magma</topic><topic>Mars</topic><topic>Mars surface</topic><topic>Meteors &amp; meteorites</topic><topic>Planetary interiors</topic><topic>Planetary mantles</topic><topic>Regolith</topic><topic>Shergottites</topic><topic>SNC meteorites</topic><topic>Surface boundary layer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McCubbin, Francis M.</creatorcontrib><creatorcontrib>Boyce, Jeremy W.</creatorcontrib><creatorcontrib>Srinivasan, Poorna</creatorcontrib><creatorcontrib>Santos, Alison R.</creatorcontrib><creatorcontrib>Elardo, Stephen M.</creatorcontrib><creatorcontrib>Filiberto, Justin</creatorcontrib><creatorcontrib>Steele, Andrew</creatorcontrib><creatorcontrib>Shearer, Charles K.</creatorcontrib><collection>Istex</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Meteoritics &amp; planetary science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McCubbin, Francis M.</au><au>Boyce, Jeremy W.</au><au>Srinivasan, Poorna</au><au>Santos, Alison R.</au><au>Elardo, Stephen M.</au><au>Filiberto, Justin</au><au>Steele, Andrew</au><au>Shearer, Charles K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heterogeneous distribution of H2O in the Martian interior: Implications for the abundance of H2O in depleted and enriched mantle sources</atitle><jtitle>Meteoritics &amp; planetary science</jtitle><addtitle>Meteorit Planet Sci</addtitle><date>2016-11</date><risdate>2016</risdate><volume>51</volume><issue>11</issue><spage>2036</spage><epage>2060</epage><pages>2036-2060</pages><issn>1086-9379</issn><eissn>1945-5100</eissn><coden>MPSCFY</coden><abstract>We conducted a petrologic study of apatite within 12 Martian meteorites, including 11 shergottites and one basaltic regolith breccia. These data were combined with previously published data to gain a better understanding of the abundance and distribution of volatiles in the Martian interior. Apatites in individual Martian meteorites span a wide range of compositions, indicating they did not form by equilibrium crystallization. In fact, the intrasample variation in apatite is best described by either fractional crystallization or crustal contamination with a Cl‐rich crustal component. We determined that most Martian meteorites investigated here have been affected by crustal contamination and hence cannot be used to estimate volatile abundances of the Martian mantle. Using the subset of samples that did not exhibit crustal contamination, we determined that the enriched shergottite source has 36–73 ppm H2O and the depleted source has 14–23 ppm H2O. This result is consistent with other observed geochemical differences between enriched and depleted shergottites and supports the idea that there are at least two geochemically distinct reservoirs in the Martian mantle. We also estimated the H2O, Cl, and F content of the Martian crust using known crust‐mantle distributions for incompatible lithophile elements. We determined that the bulk Martian crust has ~1410 ppm H2O, 450 ppm Cl, and 106 ppm F, and Cl and H2O are preferentially distributed toward the Martian surface. The estimate of crustal H2O results in a global equivalent surface layer (GEL) of ~229 m, which can account for at least some of the surface features on Mars attributed to flowing water and may be sufficient to support the past presence of a shallow sea on Mars' surface.</abstract><cop>Hoboken</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/maps.12639</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1086-9379
ispartof Meteoritics & planetary science, 2016-11, Vol.51 (11), p.2036-2060
issn 1086-9379
1945-5100
language eng
recordid cdi_proquest_journals_1900731055
source Wiley Free Content; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Abundance
Apatite
Breccia
Contamination
Crystallization
Depletion
Enrichment
Fractional crystallization
Geochemistry
Magma
Mars
Mars surface
Meteors & meteorites
Planetary interiors
Planetary mantles
Regolith
Shergottites
SNC meteorites
Surface boundary layer
title Heterogeneous distribution of H2O in the Martian interior: Implications for the abundance of H2O in depleted and enriched mantle sources
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T00%3A54%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heterogeneous%20distribution%20of%20H2O%20in%20the%20Martian%20interior:%20Implications%20for%20the%20abundance%20of%20H2O%20in%20depleted%20and%20enriched%20mantle%20sources&rft.jtitle=Meteoritics%20&%20planetary%20science&rft.au=McCubbin,%20Francis%20M.&rft.date=2016-11&rft.volume=51&rft.issue=11&rft.spage=2036&rft.epage=2060&rft.pages=2036-2060&rft.issn=1086-9379&rft.eissn=1945-5100&rft.coden=MPSCFY&rft_id=info:doi/10.1111/maps.12639&rft_dat=%3Cproquest_wiley%3E1900731055%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1837124681&rft_id=info:pmid/&rfr_iscdi=true