Performance simulation of a solar- and pellet-based thermal system with low temperature heating solutions
The low energy consumption of new housing, together with low temperature space heating solutions, provides a great deal of potential for an improvement to the thermal and environmental performance of heat-generating technologies and heat loss reduction in heating systems. The objective of this work...
Gespeichert in:
Veröffentlicht in: | Energy efficiency 2017-06, Vol.10 (3), p.729-741 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 741 |
---|---|
container_issue | 3 |
container_start_page | 729 |
container_title | Energy efficiency |
container_volume | 10 |
creator | Žandeckis, A. Kirsanovs, V. Dzikēvičs, M. Kļaviņa, K. |
description | The low energy consumption of new housing, together with low temperature space heating solutions, provides a great deal of potential for an improvement to the thermal and environmental performance of heat-generating technologies and heat loss reduction in heating systems. The objective of this work is to evaluate the performance of a pellet and solar combisystem at different temperature ranges in a space heating (SH) system. The dynamic system simulation was performed in TRNSYS. Four SH temperature ranges will be assessed through different cases. For every SH temperature range, two cases were simulated—with and without an electric auxiliary heater. A system without solar collectors was used for the reference cases. The study will show that in the different cases, the reduction of the SH temperature allows for the reduction of temperature setpoints for the pellet boiler. A higher thermal performance of heat-generating technologies, lower heat losses and lower CO emissions can then be reached as a result. A further reduction of SH temperature will lead to slightly higher solar gains and a lower amount of total CO emissions. At the same time, higher heat losses from some components and lower or similar fractional thermal energy savings were observed. |
doi_str_mv | 10.1007/s12053-016-9482-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1900035392</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1900035392</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-1d8909d012319f80730906f8c1ec8d97e7c8d84e1a2cfa1961af8d8abac325223</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMoOOj8AHcB19GbZPrIUgZfMKALBXch097MVNqmJinD_HtTKuJGuHAfnPNdOIRccbjhAMVt4AIyyYDnTK1KweQJWfCsAJavivL0d84_zskyhGYLkotcplqQ5hW9db4zfYU0NN3Ymti4njpLDQ2uNZ5R09d0wLbFyLYmYE3jHpOjpeEYInb00MQ9bd2BpmVAb-Loke4xgfrdxBgnYrgkZ9a0AZc__YK8P9y_rZ_Y5uXxeX23YZUEFRmvSwWqBi4kV7aEIl0ht2XFsSprVWCRWrlCbkRlDVc5NzYdzNZUUmRCyAtyPXMH775GDFF_utH36aXmCgBkJtWk4rOq8i4Ej1YPvumMP2oOegpVz6HqFKqeQtUyecTsCUnb79D_If9r-gZvCXsS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1900035392</pqid></control><display><type>article</type><title>Performance simulation of a solar- and pellet-based thermal system with low temperature heating solutions</title><source>SpringerLink Journals</source><source>Alma/SFX Local Collection</source><creator>Žandeckis, A. ; Kirsanovs, V. ; Dzikēvičs, M. ; Kļaviņa, K.</creator><creatorcontrib>Žandeckis, A. ; Kirsanovs, V. ; Dzikēvičs, M. ; Kļaviņa, K.</creatorcontrib><description>The low energy consumption of new housing, together with low temperature space heating solutions, provides a great deal of potential for an improvement to the thermal and environmental performance of heat-generating technologies and heat loss reduction in heating systems. The objective of this work is to evaluate the performance of a pellet and solar combisystem at different temperature ranges in a space heating (SH) system. The dynamic system simulation was performed in TRNSYS. Four SH temperature ranges will be assessed through different cases. For every SH temperature range, two cases were simulated—with and without an electric auxiliary heater. A system without solar collectors was used for the reference cases. The study will show that in the different cases, the reduction of the SH temperature allows for the reduction of temperature setpoints for the pellet boiler. A higher thermal performance of heat-generating technologies, lower heat losses and lower CO emissions can then be reached as a result. A further reduction of SH temperature will lead to slightly higher solar gains and a lower amount of total CO emissions. At the same time, higher heat losses from some components and lower or similar fractional thermal energy savings were observed.</description><identifier>ISSN: 1570-646X</identifier><identifier>EISSN: 1570-6478</identifier><identifier>DOI: 10.1007/s12053-016-9482-3</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Economics and Management ; Emissions ; Energy ; Energy conservation ; Energy consumption ; Energy Efficiency ; Energy Policy ; Environment ; Environmental Economics ; Environmental performance ; Heat ; Heat loss ; Heating ; Heating systems ; Loss reduction ; Low temperature ; Original Article ; Performance evaluation ; Renewable and Green Energy ; Simulation ; Solar collectors ; Solar energy ; Space heating ; Sustainable Development ; Thermal energy ; Water heaters</subject><ispartof>Energy efficiency, 2017-06, Vol.10 (3), p.729-741</ispartof><rights>Springer Science+Business Media Dordrecht 2016</rights><rights>Energy Efficiency is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c309t-1d8909d012319f80730906f8c1ec8d97e7c8d84e1a2cfa1961af8d8abac325223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12053-016-9482-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12053-016-9482-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Žandeckis, A.</creatorcontrib><creatorcontrib>Kirsanovs, V.</creatorcontrib><creatorcontrib>Dzikēvičs, M.</creatorcontrib><creatorcontrib>Kļaviņa, K.</creatorcontrib><title>Performance simulation of a solar- and pellet-based thermal system with low temperature heating solutions</title><title>Energy efficiency</title><addtitle>Energy Efficiency</addtitle><description>The low energy consumption of new housing, together with low temperature space heating solutions, provides a great deal of potential for an improvement to the thermal and environmental performance of heat-generating technologies and heat loss reduction in heating systems. The objective of this work is to evaluate the performance of a pellet and solar combisystem at different temperature ranges in a space heating (SH) system. The dynamic system simulation was performed in TRNSYS. Four SH temperature ranges will be assessed through different cases. For every SH temperature range, two cases were simulated—with and without an electric auxiliary heater. A system without solar collectors was used for the reference cases. The study will show that in the different cases, the reduction of the SH temperature allows for the reduction of temperature setpoints for the pellet boiler. A higher thermal performance of heat-generating technologies, lower heat losses and lower CO emissions can then be reached as a result. A further reduction of SH temperature will lead to slightly higher solar gains and a lower amount of total CO emissions. At the same time, higher heat losses from some components and lower or similar fractional thermal energy savings were observed.</description><subject>Economics and Management</subject><subject>Emissions</subject><subject>Energy</subject><subject>Energy conservation</subject><subject>Energy consumption</subject><subject>Energy Efficiency</subject><subject>Energy Policy</subject><subject>Environment</subject><subject>Environmental Economics</subject><subject>Environmental performance</subject><subject>Heat</subject><subject>Heat loss</subject><subject>Heating</subject><subject>Heating systems</subject><subject>Loss reduction</subject><subject>Low temperature</subject><subject>Original Article</subject><subject>Performance evaluation</subject><subject>Renewable and Green Energy</subject><subject>Simulation</subject><subject>Solar collectors</subject><subject>Solar energy</subject><subject>Space heating</subject><subject>Sustainable Development</subject><subject>Thermal energy</subject><subject>Water heaters</subject><issn>1570-646X</issn><issn>1570-6478</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kEtLxDAUhYMoOOj8AHcB19GbZPrIUgZfMKALBXch097MVNqmJinD_HtTKuJGuHAfnPNdOIRccbjhAMVt4AIyyYDnTK1KweQJWfCsAJavivL0d84_zskyhGYLkotcplqQ5hW9db4zfYU0NN3Ymti4njpLDQ2uNZ5R09d0wLbFyLYmYE3jHpOjpeEYInb00MQ9bd2BpmVAb-Loke4xgfrdxBgnYrgkZ9a0AZc__YK8P9y_rZ_Y5uXxeX23YZUEFRmvSwWqBi4kV7aEIl0ht2XFsSprVWCRWrlCbkRlDVc5NzYdzNZUUmRCyAtyPXMH775GDFF_utH36aXmCgBkJtWk4rOq8i4Ej1YPvumMP2oOegpVz6HqFKqeQtUyecTsCUnb79D_If9r-gZvCXsS</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Žandeckis, A.</creator><creator>Kirsanovs, V.</creator><creator>Dzikēvičs, M.</creator><creator>Kļaviņa, K.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>M0C</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>PATMY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope></search><sort><creationdate>20170601</creationdate><title>Performance simulation of a solar- and pellet-based thermal system with low temperature heating solutions</title><author>Žandeckis, A. ; Kirsanovs, V. ; Dzikēvičs, M. ; Kļaviņa, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-1d8909d012319f80730906f8c1ec8d97e7c8d84e1a2cfa1961af8d8abac325223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Economics and Management</topic><topic>Emissions</topic><topic>Energy</topic><topic>Energy conservation</topic><topic>Energy consumption</topic><topic>Energy Efficiency</topic><topic>Energy Policy</topic><topic>Environment</topic><topic>Environmental Economics</topic><topic>Environmental performance</topic><topic>Heat</topic><topic>Heat loss</topic><topic>Heating</topic><topic>Heating systems</topic><topic>Loss reduction</topic><topic>Low temperature</topic><topic>Original Article</topic><topic>Performance evaluation</topic><topic>Renewable and Green Energy</topic><topic>Simulation</topic><topic>Solar collectors</topic><topic>Solar energy</topic><topic>Space heating</topic><topic>Sustainable Development</topic><topic>Thermal energy</topic><topic>Water heaters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Žandeckis, A.</creatorcontrib><creatorcontrib>Kirsanovs, V.</creatorcontrib><creatorcontrib>Dzikēvičs, M.</creatorcontrib><creatorcontrib>Kļaviņa, K.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Environmental Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Energy efficiency</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Žandeckis, A.</au><au>Kirsanovs, V.</au><au>Dzikēvičs, M.</au><au>Kļaviņa, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance simulation of a solar- and pellet-based thermal system with low temperature heating solutions</atitle><jtitle>Energy efficiency</jtitle><stitle>Energy Efficiency</stitle><date>2017-06-01</date><risdate>2017</risdate><volume>10</volume><issue>3</issue><spage>729</spage><epage>741</epage><pages>729-741</pages><issn>1570-646X</issn><eissn>1570-6478</eissn><abstract>The low energy consumption of new housing, together with low temperature space heating solutions, provides a great deal of potential for an improvement to the thermal and environmental performance of heat-generating technologies and heat loss reduction in heating systems. The objective of this work is to evaluate the performance of a pellet and solar combisystem at different temperature ranges in a space heating (SH) system. The dynamic system simulation was performed in TRNSYS. Four SH temperature ranges will be assessed through different cases. For every SH temperature range, two cases were simulated—with and without an electric auxiliary heater. A system without solar collectors was used for the reference cases. The study will show that in the different cases, the reduction of the SH temperature allows for the reduction of temperature setpoints for the pellet boiler. A higher thermal performance of heat-generating technologies, lower heat losses and lower CO emissions can then be reached as a result. A further reduction of SH temperature will lead to slightly higher solar gains and a lower amount of total CO emissions. At the same time, higher heat losses from some components and lower or similar fractional thermal energy savings were observed.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s12053-016-9482-3</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1570-646X |
ispartof | Energy efficiency, 2017-06, Vol.10 (3), p.729-741 |
issn | 1570-646X 1570-6478 |
language | eng |
recordid | cdi_proquest_journals_1900035392 |
source | SpringerLink Journals; Alma/SFX Local Collection |
subjects | Economics and Management Emissions Energy Energy conservation Energy consumption Energy Efficiency Energy Policy Environment Environmental Economics Environmental performance Heat Heat loss Heating Heating systems Loss reduction Low temperature Original Article Performance evaluation Renewable and Green Energy Simulation Solar collectors Solar energy Space heating Sustainable Development Thermal energy Water heaters |
title | Performance simulation of a solar- and pellet-based thermal system with low temperature heating solutions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T02%3A40%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20simulation%20of%20a%20solar-%20and%20pellet-based%20thermal%20system%20with%20low%20temperature%20heating%20solutions&rft.jtitle=Energy%20efficiency&rft.au=%C5%BDandeckis,%20A.&rft.date=2017-06-01&rft.volume=10&rft.issue=3&rft.spage=729&rft.epage=741&rft.pages=729-741&rft.issn=1570-646X&rft.eissn=1570-6478&rft_id=info:doi/10.1007/s12053-016-9482-3&rft_dat=%3Cproquest_cross%3E1900035392%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1900035392&rft_id=info:pmid/&rfr_iscdi=true |