Modeling the early evolution of Vesta

The early evolution of the asteroid Vesta has been extensively studied because of the availability of relevant data, especially important new studies of HED meteorites which originated from Vesta and the Dawn mission to Vesta in 2011–2012. These studies have concluded that an early melting episode l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Meteoritics & planetary science 2017-05, Vol.52 (5), p.859-868
Hauptverfasser: Weisfeiler, Marie, Turcotte, Donald L., Kellogg, Louise H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 868
container_issue 5
container_start_page 859
container_title Meteoritics & planetary science
container_volume 52
creator Weisfeiler, Marie
Turcotte, Donald L.
Kellogg, Louise H.
description The early evolution of the asteroid Vesta has been extensively studied because of the availability of relevant data, especially important new studies of HED meteorites which originated from Vesta and the Dawn mission to Vesta in 2011–2012. These studies have concluded that an early melting episode led to the differentiation of Vesta into crust, mantle, and core. This melting episode is attributed to the decay of 26Al, which has a half‐life of 7.17 × 105 yr. This heating produced a global magma ocean. Surface cooling of this magma ocean will produce a solid crust. In this paper, we propose a convective heat‐transfer mechanism that effectively cools the asteroid when the degree of melting reaches about 50%. We propose that a cool solid surface crust, which is gravitationally unstable, will founder into the solid–liquid mix beneath and will very effectively transfer heat that prevents further melting of the interior. In this paper, we quantify this process. If Vesta had a very early formation, melting would commence at an age of about 1,30,000 yr, and solidification would occur at an age of about 10 Myr. If Vesta formed with a time delay greater than about 2 Myr, no melting would have occurred. An important result of our model is that the early melting episode is restricted to the first 10 Myr. This result is in good agreement with the radiometric ages of the HED meteorites.
doi_str_mv 10.1111/maps.12836
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1900002688</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1900002688</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4266-ebd189fd99baf67609bb0e9fcae215a6cb45eb79c66f2e0cdc3696d2098f155e3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK5e_AUF8SJ0TdImbY7L4hfsouDHNSTpRLt0m5q0Sv-9WevZ9zJzeGZeeBA6J3hBYq53qgsLQsuMH6AZETlLGcH4MO645KnICnGMTkLYYpwxkuUzdLlxFTR1-570H5CA8s2YwJdrhr52beJs8gahV6foyKomwNnfnKPX25uX1X26frx7WC3Xqcop5ynoipTCVkJoZXnBsdAag7BGASVMcaNzBroQhnNLAZvKZFzwimJRWsIYZHN0Mf3tvPscYrPcusG3sVISgWMoL8tIXU2U8S4ED1Z2vt4pP0qC5V6D3GuQvxoiTCb4u25g_IeUm-XT83TzAzT9XsY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1900002688</pqid></control><display><type>article</type><title>Modeling the early evolution of Vesta</title><source>Wiley Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library All Journals</source><creator>Weisfeiler, Marie ; Turcotte, Donald L. ; Kellogg, Louise H.</creator><creatorcontrib>Weisfeiler, Marie ; Turcotte, Donald L. ; Kellogg, Louise H.</creatorcontrib><description>The early evolution of the asteroid Vesta has been extensively studied because of the availability of relevant data, especially important new studies of HED meteorites which originated from Vesta and the Dawn mission to Vesta in 2011–2012. These studies have concluded that an early melting episode led to the differentiation of Vesta into crust, mantle, and core. This melting episode is attributed to the decay of 26Al, which has a half‐life of 7.17 × 105 yr. This heating produced a global magma ocean. Surface cooling of this magma ocean will produce a solid crust. In this paper, we propose a convective heat‐transfer mechanism that effectively cools the asteroid when the degree of melting reaches about 50%. We propose that a cool solid surface crust, which is gravitationally unstable, will founder into the solid–liquid mix beneath and will very effectively transfer heat that prevents further melting of the interior. In this paper, we quantify this process. If Vesta had a very early formation, melting would commence at an age of about 1,30,000 yr, and solidification would occur at an age of about 10 Myr. If Vesta formed with a time delay greater than about 2 Myr, no melting would have occurred. An important result of our model is that the early melting episode is restricted to the first 10 Myr. This result is in good agreement with the radiometric ages of the HED meteorites.</description><identifier>ISSN: 1086-9379</identifier><identifier>EISSN: 1945-5100</identifier><identifier>DOI: 10.1111/maps.12836</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Asteroid missions ; Asteroids ; Magma ; Melting ; Meteorites ; Meteors &amp; meteorites ; Solid surfaces ; Solidification ; Solids ; Surface cooling ; Vesta asteroid</subject><ispartof>Meteoritics &amp; planetary science, 2017-05, Vol.52 (5), p.859-868</ispartof><rights>The Meteoritical Society, 2017.</rights><rights>Copyright © 2017 The Meteoritical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4266-ebd189fd99baf67609bb0e9fcae215a6cb45eb79c66f2e0cdc3696d2098f155e3</citedby><cites>FETCH-LOGICAL-a4266-ebd189fd99baf67609bb0e9fcae215a6cb45eb79c66f2e0cdc3696d2098f155e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fmaps.12836$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fmaps.12836$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,1432,27923,27924,45573,45574,46408,46832</link.rule.ids></links><search><creatorcontrib>Weisfeiler, Marie</creatorcontrib><creatorcontrib>Turcotte, Donald L.</creatorcontrib><creatorcontrib>Kellogg, Louise H.</creatorcontrib><title>Modeling the early evolution of Vesta</title><title>Meteoritics &amp; planetary science</title><description>The early evolution of the asteroid Vesta has been extensively studied because of the availability of relevant data, especially important new studies of HED meteorites which originated from Vesta and the Dawn mission to Vesta in 2011–2012. These studies have concluded that an early melting episode led to the differentiation of Vesta into crust, mantle, and core. This melting episode is attributed to the decay of 26Al, which has a half‐life of 7.17 × 105 yr. This heating produced a global magma ocean. Surface cooling of this magma ocean will produce a solid crust. In this paper, we propose a convective heat‐transfer mechanism that effectively cools the asteroid when the degree of melting reaches about 50%. We propose that a cool solid surface crust, which is gravitationally unstable, will founder into the solid–liquid mix beneath and will very effectively transfer heat that prevents further melting of the interior. In this paper, we quantify this process. If Vesta had a very early formation, melting would commence at an age of about 1,30,000 yr, and solidification would occur at an age of about 10 Myr. If Vesta formed with a time delay greater than about 2 Myr, no melting would have occurred. An important result of our model is that the early melting episode is restricted to the first 10 Myr. This result is in good agreement with the radiometric ages of the HED meteorites.</description><subject>Asteroid missions</subject><subject>Asteroids</subject><subject>Magma</subject><subject>Melting</subject><subject>Meteorites</subject><subject>Meteors &amp; meteorites</subject><subject>Solid surfaces</subject><subject>Solidification</subject><subject>Solids</subject><subject>Surface cooling</subject><subject>Vesta asteroid</subject><issn>1086-9379</issn><issn>1945-5100</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK5e_AUF8SJ0TdImbY7L4hfsouDHNSTpRLt0m5q0Sv-9WevZ9zJzeGZeeBA6J3hBYq53qgsLQsuMH6AZETlLGcH4MO645KnICnGMTkLYYpwxkuUzdLlxFTR1-570H5CA8s2YwJdrhr52beJs8gahV6foyKomwNnfnKPX25uX1X26frx7WC3Xqcop5ynoipTCVkJoZXnBsdAag7BGASVMcaNzBroQhnNLAZvKZFzwimJRWsIYZHN0Mf3tvPscYrPcusG3sVISgWMoL8tIXU2U8S4ED1Z2vt4pP0qC5V6D3GuQvxoiTCb4u25g_IeUm-XT83TzAzT9XsY</recordid><startdate>201705</startdate><enddate>201705</enddate><creator>Weisfeiler, Marie</creator><creator>Turcotte, Donald L.</creator><creator>Kellogg, Louise H.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope></search><sort><creationdate>201705</creationdate><title>Modeling the early evolution of Vesta</title><author>Weisfeiler, Marie ; Turcotte, Donald L. ; Kellogg, Louise H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4266-ebd189fd99baf67609bb0e9fcae215a6cb45eb79c66f2e0cdc3696d2098f155e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Asteroid missions</topic><topic>Asteroids</topic><topic>Magma</topic><topic>Melting</topic><topic>Meteorites</topic><topic>Meteors &amp; meteorites</topic><topic>Solid surfaces</topic><topic>Solidification</topic><topic>Solids</topic><topic>Surface cooling</topic><topic>Vesta asteroid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weisfeiler, Marie</creatorcontrib><creatorcontrib>Turcotte, Donald L.</creatorcontrib><creatorcontrib>Kellogg, Louise H.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Meteoritics &amp; planetary science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weisfeiler, Marie</au><au>Turcotte, Donald L.</au><au>Kellogg, Louise H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling the early evolution of Vesta</atitle><jtitle>Meteoritics &amp; planetary science</jtitle><date>2017-05</date><risdate>2017</risdate><volume>52</volume><issue>5</issue><spage>859</spage><epage>868</epage><pages>859-868</pages><issn>1086-9379</issn><eissn>1945-5100</eissn><abstract>The early evolution of the asteroid Vesta has been extensively studied because of the availability of relevant data, especially important new studies of HED meteorites which originated from Vesta and the Dawn mission to Vesta in 2011–2012. These studies have concluded that an early melting episode led to the differentiation of Vesta into crust, mantle, and core. This melting episode is attributed to the decay of 26Al, which has a half‐life of 7.17 × 105 yr. This heating produced a global magma ocean. Surface cooling of this magma ocean will produce a solid crust. In this paper, we propose a convective heat‐transfer mechanism that effectively cools the asteroid when the degree of melting reaches about 50%. We propose that a cool solid surface crust, which is gravitationally unstable, will founder into the solid–liquid mix beneath and will very effectively transfer heat that prevents further melting of the interior. In this paper, we quantify this process. If Vesta had a very early formation, melting would commence at an age of about 1,30,000 yr, and solidification would occur at an age of about 10 Myr. If Vesta formed with a time delay greater than about 2 Myr, no melting would have occurred. An important result of our model is that the early melting episode is restricted to the first 10 Myr. This result is in good agreement with the radiometric ages of the HED meteorites.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/maps.12836</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1086-9379
ispartof Meteoritics & planetary science, 2017-05, Vol.52 (5), p.859-868
issn 1086-9379
1945-5100
language eng
recordid cdi_proquest_journals_1900002688
source Wiley Free Content; EZB-FREE-00999 freely available EZB journals; Wiley Online Library All Journals
subjects Asteroid missions
Asteroids
Magma
Melting
Meteorites
Meteors & meteorites
Solid surfaces
Solidification
Solids
Surface cooling
Vesta asteroid
title Modeling the early evolution of Vesta
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T04%3A05%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20the%20early%20evolution%20of%20Vesta&rft.jtitle=Meteoritics%20&%20planetary%20science&rft.au=Weisfeiler,%20Marie&rft.date=2017-05&rft.volume=52&rft.issue=5&rft.spage=859&rft.epage=868&rft.pages=859-868&rft.issn=1086-9379&rft.eissn=1945-5100&rft_id=info:doi/10.1111/maps.12836&rft_dat=%3Cproquest_cross%3E1900002688%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1900002688&rft_id=info:pmid/&rfr_iscdi=true