On the Geometry of the Hyperbolic Scator Space in 1+2 Dimensions
We consider the scator space in 1+2 dimensions—a hypercomplex, non-distributive hyperbolic algebra introduced by Fernández-Guasti and Zaldívar. We find a method for treating scators algebraically by embedding them into a distributive and commutative algebra. A notion of dual scators is introduced an...
Gespeichert in:
Veröffentlicht in: | Advances in applied Clifford algebras 2017-06, Vol.27 (2), p.1369-1386 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1386 |
---|---|
container_issue | 2 |
container_start_page | 1369 |
container_title | Advances in applied Clifford algebras |
container_volume | 27 |
creator | Kobus, Artur Cieśliński, Jan L. |
description | We consider the scator space in 1+2 dimensions—a hypercomplex, non-distributive hyperbolic algebra introduced by Fernández-Guasti and Zaldívar. We find a method for treating scators algebraically by embedding them into a distributive and commutative algebra. A notion of dual scators is introduced and discussed. We also study isometries of the scator space. It turns out that zero divisors cannot be avoided while dealing with these isometries. The scator algebra may be endowed with a nice physical interpretation, although it suffers from lack of some physically demanded important features. Despite that, there arise some open questions, e.g., whether hypothetical tachyons can be considered as usual particles possessing time-like trajectories. |
doi_str_mv | 10.1007/s00006-016-0658-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1899835232</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1899835232</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-aef177a1bf41e2e19b3b8af3f8f4080fda8fd86bfd56f7d4a36314d3b3fba83d3</originalsourceid><addsrcrecordid>eNp1kM9LwzAUx4MoOKd_gLeAR4nmNW2a3JSpmzDYYXoOSZtox9bUpIP1vzezHrz44PF48P0BH4Sugd4BpeV9pGk4oZCWF4IcTtAEOAeSSypP0YSCEKSkVJ6jixg3lOacMTFBD6sW958Wz63f2T4M2LuffzF0Nhi_bSq8rnTvA153urK4aTHcZvip2dk2Nr6Nl-jM6W20V793it5fnt9mC7JczV9nj0tSsUL2RFsHZanBuBxsZkEaZoR2zAmXU0FdrYWrBTeuLrgr61wzziCvmWHOaMFqNkU3Y24X_Nfexl5t_D60qVKBkFKwImNZUsGoqoKPMVinutDsdBgUUHUEpUZQKoFSR1DqkDzZ6IlJ237Y8Cf5X9M3YFhq7A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899835232</pqid></control><display><type>article</type><title>On the Geometry of the Hyperbolic Scator Space in 1+2 Dimensions</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kobus, Artur ; Cieśliński, Jan L.</creator><creatorcontrib>Kobus, Artur ; Cieśliński, Jan L.</creatorcontrib><description>We consider the scator space in 1+2 dimensions—a hypercomplex, non-distributive hyperbolic algebra introduced by Fernández-Guasti and Zaldívar. We find a method for treating scators algebraically by embedding them into a distributive and commutative algebra. A notion of dual scators is introduced and discussed. We also study isometries of the scator space. It turns out that zero divisors cannot be avoided while dealing with these isometries. The scator algebra may be endowed with a nice physical interpretation, although it suffers from lack of some physically demanded important features. Despite that, there arise some open questions, e.g., whether hypothetical tachyons can be considered as usual particles possessing time-like trajectories.</description><identifier>ISSN: 0188-7009</identifier><identifier>EISSN: 1661-4909</identifier><identifier>DOI: 10.1007/s00006-016-0658-x</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algebra ; Applications of Mathematics ; Mathematical and Computational Physics ; Mathematical Methods in Physics ; Physics ; Physics and Astronomy ; Tachyons ; Theoretical</subject><ispartof>Advances in applied Clifford algebras, 2017-06, Vol.27 (2), p.1369-1386</ispartof><rights>The Author(s) 2016</rights><rights>Copyright Springer Science & Business Media 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-aef177a1bf41e2e19b3b8af3f8f4080fda8fd86bfd56f7d4a36314d3b3fba83d3</citedby><cites>FETCH-LOGICAL-c359t-aef177a1bf41e2e19b3b8af3f8f4080fda8fd86bfd56f7d4a36314d3b3fba83d3</cites><orcidid>0000-0003-1730-0950</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00006-016-0658-x$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00006-016-0658-x$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Kobus, Artur</creatorcontrib><creatorcontrib>Cieśliński, Jan L.</creatorcontrib><title>On the Geometry of the Hyperbolic Scator Space in 1+2 Dimensions</title><title>Advances in applied Clifford algebras</title><addtitle>Adv. Appl. Clifford Algebras</addtitle><description>We consider the scator space in 1+2 dimensions—a hypercomplex, non-distributive hyperbolic algebra introduced by Fernández-Guasti and Zaldívar. We find a method for treating scators algebraically by embedding them into a distributive and commutative algebra. A notion of dual scators is introduced and discussed. We also study isometries of the scator space. It turns out that zero divisors cannot be avoided while dealing with these isometries. The scator algebra may be endowed with a nice physical interpretation, although it suffers from lack of some physically demanded important features. Despite that, there arise some open questions, e.g., whether hypothetical tachyons can be considered as usual particles possessing time-like trajectories.</description><subject>Algebra</subject><subject>Applications of Mathematics</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Methods in Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Tachyons</subject><subject>Theoretical</subject><issn>0188-7009</issn><issn>1661-4909</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp1kM9LwzAUx4MoOKd_gLeAR4nmNW2a3JSpmzDYYXoOSZtox9bUpIP1vzezHrz44PF48P0BH4Sugd4BpeV9pGk4oZCWF4IcTtAEOAeSSypP0YSCEKSkVJ6jixg3lOacMTFBD6sW958Wz63f2T4M2LuffzF0Nhi_bSq8rnTvA153urK4aTHcZvip2dk2Nr6Nl-jM6W20V793it5fnt9mC7JczV9nj0tSsUL2RFsHZanBuBxsZkEaZoR2zAmXU0FdrYWrBTeuLrgr61wzziCvmWHOaMFqNkU3Y24X_Nfexl5t_D60qVKBkFKwImNZUsGoqoKPMVinutDsdBgUUHUEpUZQKoFSR1DqkDzZ6IlJ237Y8Cf5X9M3YFhq7A</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Kobus, Artur</creator><creator>Cieśliński, Jan L.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1730-0950</orcidid></search><sort><creationdate>20170601</creationdate><title>On the Geometry of the Hyperbolic Scator Space in 1+2 Dimensions</title><author>Kobus, Artur ; Cieśliński, Jan L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-aef177a1bf41e2e19b3b8af3f8f4080fda8fd86bfd56f7d4a36314d3b3fba83d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algebra</topic><topic>Applications of Mathematics</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Methods in Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Tachyons</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kobus, Artur</creatorcontrib><creatorcontrib>Cieśliński, Jan L.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Advances in applied Clifford algebras</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kobus, Artur</au><au>Cieśliński, Jan L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Geometry of the Hyperbolic Scator Space in 1+2 Dimensions</atitle><jtitle>Advances in applied Clifford algebras</jtitle><stitle>Adv. Appl. Clifford Algebras</stitle><date>2017-06-01</date><risdate>2017</risdate><volume>27</volume><issue>2</issue><spage>1369</spage><epage>1386</epage><pages>1369-1386</pages><issn>0188-7009</issn><eissn>1661-4909</eissn><abstract>We consider the scator space in 1+2 dimensions—a hypercomplex, non-distributive hyperbolic algebra introduced by Fernández-Guasti and Zaldívar. We find a method for treating scators algebraically by embedding them into a distributive and commutative algebra. A notion of dual scators is introduced and discussed. We also study isometries of the scator space. It turns out that zero divisors cannot be avoided while dealing with these isometries. The scator algebra may be endowed with a nice physical interpretation, although it suffers from lack of some physically demanded important features. Despite that, there arise some open questions, e.g., whether hypothetical tachyons can be considered as usual particles possessing time-like trajectories.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00006-016-0658-x</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-1730-0950</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0188-7009 |
ispartof | Advances in applied Clifford algebras, 2017-06, Vol.27 (2), p.1369-1386 |
issn | 0188-7009 1661-4909 |
language | eng |
recordid | cdi_proquest_journals_1899835232 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algebra Applications of Mathematics Mathematical and Computational Physics Mathematical Methods in Physics Physics Physics and Astronomy Tachyons Theoretical |
title | On the Geometry of the Hyperbolic Scator Space in 1+2 Dimensions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T15%3A59%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Geometry%20of%20the%20Hyperbolic%20Scator%20Space%20in%201+2%20Dimensions&rft.jtitle=Advances%20in%20applied%20Clifford%20algebras&rft.au=Kobus,%20Artur&rft.date=2017-06-01&rft.volume=27&rft.issue=2&rft.spage=1369&rft.epage=1386&rft.pages=1369-1386&rft.issn=0188-7009&rft.eissn=1661-4909&rft_id=info:doi/10.1007/s00006-016-0658-x&rft_dat=%3Cproquest_cross%3E1899835232%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1899835232&rft_id=info:pmid/&rfr_iscdi=true |