On the Geometry of the Hyperbolic Scator Space in 1+2 Dimensions

We consider the scator space in 1+2 dimensions—a hypercomplex, non-distributive hyperbolic algebra introduced by Fernández-Guasti and Zaldívar. We find a method for treating scators algebraically by embedding them into a distributive and commutative algebra. A notion of dual scators is introduced an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in applied Clifford algebras 2017-06, Vol.27 (2), p.1369-1386
Hauptverfasser: Kobus, Artur, Cieśliński, Jan L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1386
container_issue 2
container_start_page 1369
container_title Advances in applied Clifford algebras
container_volume 27
creator Kobus, Artur
Cieśliński, Jan L.
description We consider the scator space in 1+2 dimensions—a hypercomplex, non-distributive hyperbolic algebra introduced by Fernández-Guasti and Zaldívar. We find a method for treating scators algebraically by embedding them into a distributive and commutative algebra. A notion of dual scators is introduced and discussed. We also study isometries of the scator space. It turns out that zero divisors cannot be avoided while dealing with these isometries. The scator algebra may be endowed with a nice physical interpretation, although it suffers from lack of some physically demanded important features. Despite that, there arise some open questions, e.g., whether hypothetical tachyons can be considered as usual particles possessing time-like trajectories.
doi_str_mv 10.1007/s00006-016-0658-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1899835232</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1899835232</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-aef177a1bf41e2e19b3b8af3f8f4080fda8fd86bfd56f7d4a36314d3b3fba83d3</originalsourceid><addsrcrecordid>eNp1kM9LwzAUx4MoOKd_gLeAR4nmNW2a3JSpmzDYYXoOSZtox9bUpIP1vzezHrz44PF48P0BH4Sugd4BpeV9pGk4oZCWF4IcTtAEOAeSSypP0YSCEKSkVJ6jixg3lOacMTFBD6sW958Wz63f2T4M2LuffzF0Nhi_bSq8rnTvA153urK4aTHcZvip2dk2Nr6Nl-jM6W20V793it5fnt9mC7JczV9nj0tSsUL2RFsHZanBuBxsZkEaZoR2zAmXU0FdrYWrBTeuLrgr61wzziCvmWHOaMFqNkU3Y24X_Nfexl5t_D60qVKBkFKwImNZUsGoqoKPMVinutDsdBgUUHUEpUZQKoFSR1DqkDzZ6IlJ237Y8Cf5X9M3YFhq7A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899835232</pqid></control><display><type>article</type><title>On the Geometry of the Hyperbolic Scator Space in 1+2 Dimensions</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kobus, Artur ; Cieśliński, Jan L.</creator><creatorcontrib>Kobus, Artur ; Cieśliński, Jan L.</creatorcontrib><description>We consider the scator space in 1+2 dimensions—a hypercomplex, non-distributive hyperbolic algebra introduced by Fernández-Guasti and Zaldívar. We find a method for treating scators algebraically by embedding them into a distributive and commutative algebra. A notion of dual scators is introduced and discussed. We also study isometries of the scator space. It turns out that zero divisors cannot be avoided while dealing with these isometries. The scator algebra may be endowed with a nice physical interpretation, although it suffers from lack of some physically demanded important features. Despite that, there arise some open questions, e.g., whether hypothetical tachyons can be considered as usual particles possessing time-like trajectories.</description><identifier>ISSN: 0188-7009</identifier><identifier>EISSN: 1661-4909</identifier><identifier>DOI: 10.1007/s00006-016-0658-x</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algebra ; Applications of Mathematics ; Mathematical and Computational Physics ; Mathematical Methods in Physics ; Physics ; Physics and Astronomy ; Tachyons ; Theoretical</subject><ispartof>Advances in applied Clifford algebras, 2017-06, Vol.27 (2), p.1369-1386</ispartof><rights>The Author(s) 2016</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-aef177a1bf41e2e19b3b8af3f8f4080fda8fd86bfd56f7d4a36314d3b3fba83d3</citedby><cites>FETCH-LOGICAL-c359t-aef177a1bf41e2e19b3b8af3f8f4080fda8fd86bfd56f7d4a36314d3b3fba83d3</cites><orcidid>0000-0003-1730-0950</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00006-016-0658-x$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00006-016-0658-x$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Kobus, Artur</creatorcontrib><creatorcontrib>Cieśliński, Jan L.</creatorcontrib><title>On the Geometry of the Hyperbolic Scator Space in 1+2 Dimensions</title><title>Advances in applied Clifford algebras</title><addtitle>Adv. Appl. Clifford Algebras</addtitle><description>We consider the scator space in 1+2 dimensions—a hypercomplex, non-distributive hyperbolic algebra introduced by Fernández-Guasti and Zaldívar. We find a method for treating scators algebraically by embedding them into a distributive and commutative algebra. A notion of dual scators is introduced and discussed. We also study isometries of the scator space. It turns out that zero divisors cannot be avoided while dealing with these isometries. The scator algebra may be endowed with a nice physical interpretation, although it suffers from lack of some physically demanded important features. Despite that, there arise some open questions, e.g., whether hypothetical tachyons can be considered as usual particles possessing time-like trajectories.</description><subject>Algebra</subject><subject>Applications of Mathematics</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Methods in Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Tachyons</subject><subject>Theoretical</subject><issn>0188-7009</issn><issn>1661-4909</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp1kM9LwzAUx4MoOKd_gLeAR4nmNW2a3JSpmzDYYXoOSZtox9bUpIP1vzezHrz44PF48P0BH4Sugd4BpeV9pGk4oZCWF4IcTtAEOAeSSypP0YSCEKSkVJ6jixg3lOacMTFBD6sW958Wz63f2T4M2LuffzF0Nhi_bSq8rnTvA153urK4aTHcZvip2dk2Nr6Nl-jM6W20V793it5fnt9mC7JczV9nj0tSsUL2RFsHZanBuBxsZkEaZoR2zAmXU0FdrYWrBTeuLrgr61wzziCvmWHOaMFqNkU3Y24X_Nfexl5t_D60qVKBkFKwImNZUsGoqoKPMVinutDsdBgUUHUEpUZQKoFSR1DqkDzZ6IlJ237Y8Cf5X9M3YFhq7A</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Kobus, Artur</creator><creator>Cieśliński, Jan L.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1730-0950</orcidid></search><sort><creationdate>20170601</creationdate><title>On the Geometry of the Hyperbolic Scator Space in 1+2 Dimensions</title><author>Kobus, Artur ; Cieśliński, Jan L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-aef177a1bf41e2e19b3b8af3f8f4080fda8fd86bfd56f7d4a36314d3b3fba83d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algebra</topic><topic>Applications of Mathematics</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Methods in Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Tachyons</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kobus, Artur</creatorcontrib><creatorcontrib>Cieśliński, Jan L.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Advances in applied Clifford algebras</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kobus, Artur</au><au>Cieśliński, Jan L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Geometry of the Hyperbolic Scator Space in 1+2 Dimensions</atitle><jtitle>Advances in applied Clifford algebras</jtitle><stitle>Adv. Appl. Clifford Algebras</stitle><date>2017-06-01</date><risdate>2017</risdate><volume>27</volume><issue>2</issue><spage>1369</spage><epage>1386</epage><pages>1369-1386</pages><issn>0188-7009</issn><eissn>1661-4909</eissn><abstract>We consider the scator space in 1+2 dimensions—a hypercomplex, non-distributive hyperbolic algebra introduced by Fernández-Guasti and Zaldívar. We find a method for treating scators algebraically by embedding them into a distributive and commutative algebra. A notion of dual scators is introduced and discussed. We also study isometries of the scator space. It turns out that zero divisors cannot be avoided while dealing with these isometries. The scator algebra may be endowed with a nice physical interpretation, although it suffers from lack of some physically demanded important features. Despite that, there arise some open questions, e.g., whether hypothetical tachyons can be considered as usual particles possessing time-like trajectories.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00006-016-0658-x</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-1730-0950</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0188-7009
ispartof Advances in applied Clifford algebras, 2017-06, Vol.27 (2), p.1369-1386
issn 0188-7009
1661-4909
language eng
recordid cdi_proquest_journals_1899835232
source SpringerLink Journals - AutoHoldings
subjects Algebra
Applications of Mathematics
Mathematical and Computational Physics
Mathematical Methods in Physics
Physics
Physics and Astronomy
Tachyons
Theoretical
title On the Geometry of the Hyperbolic Scator Space in 1+2 Dimensions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T15%3A59%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Geometry%20of%20the%20Hyperbolic%20Scator%20Space%20in%201+2%20Dimensions&rft.jtitle=Advances%20in%20applied%20Clifford%20algebras&rft.au=Kobus,%20Artur&rft.date=2017-06-01&rft.volume=27&rft.issue=2&rft.spage=1369&rft.epage=1386&rft.pages=1369-1386&rft.issn=0188-7009&rft.eissn=1661-4909&rft_id=info:doi/10.1007/s00006-016-0658-x&rft_dat=%3Cproquest_cross%3E1899835232%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1899835232&rft_id=info:pmid/&rfr_iscdi=true