The effect of attribute normalization factors in attribute distance weighted average

Attribute distance weighted average (ADWA) is a new filtering paradigm, which can progressively alleviate the denoising contradiction between the noise removal and feature preservation by introducing new attributes. As the key control parameters in ADWA, the attribute normalization factors play an i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Automatic control and computer sciences 2017-03, Vol.51 (2), p.85-96
Hauptverfasser: Xiong, Gang, Lan, Jiming, Zhang, Haiyan, Ding, Tian-Huai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 96
container_issue 2
container_start_page 85
container_title Automatic control and computer sciences
container_volume 51
creator Xiong, Gang
Lan, Jiming
Zhang, Haiyan
Ding, Tian-Huai
description Attribute distance weighted average (ADWA) is a new filtering paradigm, which can progressively alleviate the denoising contradiction between the noise removal and feature preservation by introducing new attributes. As the key control parameters in ADWA, the attribute normalization factors play an important role in the final filtering result. An in-depth study is necessary to exam the effect the attribute normalization factors have on the filtering performance and the rules they follow, which can then serve as a guide for the determination and optimization of attribute normalization factors. For this purpose, the three attributes of a signal, “Location,” “Value,” and “Gradient,” are studied as an example in this paper. Experimental results indicate that the normalization factors directly determine the strength of the effect the corresponding attributes have on the filtering result. If the normalization factor increases, ADWA’s ability in noise removal becomes stronger and meanwhile its ability in feature preservation becomes weaker. Therefore, the denoising contradiction still exists for ADWA of a specific attribute rank. However, since different attributes contribute to the filtering performance independently in different regions of a signal, the denoising contradiction can be further alleviated by introducing new attributes, and thus a more satisfactory outcome can be obtained.
doi_str_mv 10.3103/S0146411617020031
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1899833879</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1899833879</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-57455de98aae7b1a13bb8c83fe963cdbe1bda8db914505e02396febe0a371cf33</originalsourceid><addsrcrecordid>eNp1kE1LAzEURYMoWKs_wF3A9WheM5lJllL8goILK7gbksxLm9JOapJR9Nc7pS4K4uot7jn3wSXkEtg1B8ZvXhiUVQlQQc0mjHE4IiMQQhbA5NsxGe3iYpefkrOUVowNmaxGZD5fIkXn0GYaHNU5R2_6jLQLcaPX_ltnHzrqtM0hJuq7A6T1KevOIv1Ev1hmbKn-wKgXeE5OnF4nvPi9Y_J6fzefPhaz54en6e2ssByqXIi6FKJFJbXG2oAGboy0kjtUFbetQTCtlq1RUAomkE24qhwaZJrXYB3nY3K1793G8N5jys0q9LEbXjYglZKcy1oNFOwpG0NKEV2zjX6j41cDrNmN1_wZb3AmeycNbLfAeND8r_QDKcdyDg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899833879</pqid></control><display><type>article</type><title>The effect of attribute normalization factors in attribute distance weighted average</title><source>SpringerLink Journals - AutoHoldings</source><creator>Xiong, Gang ; Lan, Jiming ; Zhang, Haiyan ; Ding, Tian-Huai</creator><creatorcontrib>Xiong, Gang ; Lan, Jiming ; Zhang, Haiyan ; Ding, Tian-Huai</creatorcontrib><description>Attribute distance weighted average (ADWA) is a new filtering paradigm, which can progressively alleviate the denoising contradiction between the noise removal and feature preservation by introducing new attributes. As the key control parameters in ADWA, the attribute normalization factors play an important role in the final filtering result. An in-depth study is necessary to exam the effect the attribute normalization factors have on the filtering performance and the rules they follow, which can then serve as a guide for the determination and optimization of attribute normalization factors. For this purpose, the three attributes of a signal, “Location,” “Value,” and “Gradient,” are studied as an example in this paper. Experimental results indicate that the normalization factors directly determine the strength of the effect the corresponding attributes have on the filtering result. If the normalization factor increases, ADWA’s ability in noise removal becomes stronger and meanwhile its ability in feature preservation becomes weaker. Therefore, the denoising contradiction still exists for ADWA of a specific attribute rank. However, since different attributes contribute to the filtering performance independently in different regions of a signal, the denoising contradiction can be further alleviated by introducing new attributes, and thus a more satisfactory outcome can be obtained.</description><identifier>ISSN: 0146-4116</identifier><identifier>EISSN: 1558-108X</identifier><identifier>DOI: 10.3103/S0146411617020031</identifier><language>eng</language><publisher>New York: Allerton Press</publisher><subject>Computer Science ; Control Structures and Microprogramming ; Filtration ; Noise reduction ; Preservation</subject><ispartof>Automatic control and computer sciences, 2017-03, Vol.51 (2), p.85-96</ispartof><rights>Allerton Press, Inc. 2017</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-57455de98aae7b1a13bb8c83fe963cdbe1bda8db914505e02396febe0a371cf33</citedby><cites>FETCH-LOGICAL-c316t-57455de98aae7b1a13bb8c83fe963cdbe1bda8db914505e02396febe0a371cf33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.3103/S0146411617020031$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.3103/S0146411617020031$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Xiong, Gang</creatorcontrib><creatorcontrib>Lan, Jiming</creatorcontrib><creatorcontrib>Zhang, Haiyan</creatorcontrib><creatorcontrib>Ding, Tian-Huai</creatorcontrib><title>The effect of attribute normalization factors in attribute distance weighted average</title><title>Automatic control and computer sciences</title><addtitle>Aut. Control Comp. Sci</addtitle><description>Attribute distance weighted average (ADWA) is a new filtering paradigm, which can progressively alleviate the denoising contradiction between the noise removal and feature preservation by introducing new attributes. As the key control parameters in ADWA, the attribute normalization factors play an important role in the final filtering result. An in-depth study is necessary to exam the effect the attribute normalization factors have on the filtering performance and the rules they follow, which can then serve as a guide for the determination and optimization of attribute normalization factors. For this purpose, the three attributes of a signal, “Location,” “Value,” and “Gradient,” are studied as an example in this paper. Experimental results indicate that the normalization factors directly determine the strength of the effect the corresponding attributes have on the filtering result. If the normalization factor increases, ADWA’s ability in noise removal becomes stronger and meanwhile its ability in feature preservation becomes weaker. Therefore, the denoising contradiction still exists for ADWA of a specific attribute rank. However, since different attributes contribute to the filtering performance independently in different regions of a signal, the denoising contradiction can be further alleviated by introducing new attributes, and thus a more satisfactory outcome can be obtained.</description><subject>Computer Science</subject><subject>Control Structures and Microprogramming</subject><subject>Filtration</subject><subject>Noise reduction</subject><subject>Preservation</subject><issn>0146-4116</issn><issn>1558-108X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEURYMoWKs_wF3A9WheM5lJllL8goILK7gbksxLm9JOapJR9Nc7pS4K4uot7jn3wSXkEtg1B8ZvXhiUVQlQQc0mjHE4IiMQQhbA5NsxGe3iYpefkrOUVowNmaxGZD5fIkXn0GYaHNU5R2_6jLQLcaPX_ltnHzrqtM0hJuq7A6T1KevOIv1Ev1hmbKn-wKgXeE5OnF4nvPi9Y_J6fzefPhaz54en6e2ssByqXIi6FKJFJbXG2oAGboy0kjtUFbetQTCtlq1RUAomkE24qhwaZJrXYB3nY3K1793G8N5jys0q9LEbXjYglZKcy1oNFOwpG0NKEV2zjX6j41cDrNmN1_wZb3AmeycNbLfAeND8r_QDKcdyDg</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Xiong, Gang</creator><creator>Lan, Jiming</creator><creator>Zhang, Haiyan</creator><creator>Ding, Tian-Huai</creator><general>Allerton Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170301</creationdate><title>The effect of attribute normalization factors in attribute distance weighted average</title><author>Xiong, Gang ; Lan, Jiming ; Zhang, Haiyan ; Ding, Tian-Huai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-57455de98aae7b1a13bb8c83fe963cdbe1bda8db914505e02396febe0a371cf33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Computer Science</topic><topic>Control Structures and Microprogramming</topic><topic>Filtration</topic><topic>Noise reduction</topic><topic>Preservation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiong, Gang</creatorcontrib><creatorcontrib>Lan, Jiming</creatorcontrib><creatorcontrib>Zhang, Haiyan</creatorcontrib><creatorcontrib>Ding, Tian-Huai</creatorcontrib><collection>CrossRef</collection><jtitle>Automatic control and computer sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiong, Gang</au><au>Lan, Jiming</au><au>Zhang, Haiyan</au><au>Ding, Tian-Huai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The effect of attribute normalization factors in attribute distance weighted average</atitle><jtitle>Automatic control and computer sciences</jtitle><stitle>Aut. Control Comp. Sci</stitle><date>2017-03-01</date><risdate>2017</risdate><volume>51</volume><issue>2</issue><spage>85</spage><epage>96</epage><pages>85-96</pages><issn>0146-4116</issn><eissn>1558-108X</eissn><abstract>Attribute distance weighted average (ADWA) is a new filtering paradigm, which can progressively alleviate the denoising contradiction between the noise removal and feature preservation by introducing new attributes. As the key control parameters in ADWA, the attribute normalization factors play an important role in the final filtering result. An in-depth study is necessary to exam the effect the attribute normalization factors have on the filtering performance and the rules they follow, which can then serve as a guide for the determination and optimization of attribute normalization factors. For this purpose, the three attributes of a signal, “Location,” “Value,” and “Gradient,” are studied as an example in this paper. Experimental results indicate that the normalization factors directly determine the strength of the effect the corresponding attributes have on the filtering result. If the normalization factor increases, ADWA’s ability in noise removal becomes stronger and meanwhile its ability in feature preservation becomes weaker. Therefore, the denoising contradiction still exists for ADWA of a specific attribute rank. However, since different attributes contribute to the filtering performance independently in different regions of a signal, the denoising contradiction can be further alleviated by introducing new attributes, and thus a more satisfactory outcome can be obtained.</abstract><cop>New York</cop><pub>Allerton Press</pub><doi>10.3103/S0146411617020031</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0146-4116
ispartof Automatic control and computer sciences, 2017-03, Vol.51 (2), p.85-96
issn 0146-4116
1558-108X
language eng
recordid cdi_proquest_journals_1899833879
source SpringerLink Journals - AutoHoldings
subjects Computer Science
Control Structures and Microprogramming
Filtration
Noise reduction
Preservation
title The effect of attribute normalization factors in attribute distance weighted average
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T17%3A22%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20effect%20of%20attribute%20normalization%20factors%20in%20attribute%20distance%20weighted%20average&rft.jtitle=Automatic%20control%20and%20computer%20sciences&rft.au=Xiong,%20Gang&rft.date=2017-03-01&rft.volume=51&rft.issue=2&rft.spage=85&rft.epage=96&rft.pages=85-96&rft.issn=0146-4116&rft.eissn=1558-108X&rft_id=info:doi/10.3103/S0146411617020031&rft_dat=%3Cproquest_cross%3E1899833879%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1899833879&rft_id=info:pmid/&rfr_iscdi=true