Impact of eliminating fracture intersection nodes in multiphase compositional flow simulation
Algebraic elimination of nodes at discrete fracture intersections via the star‐delta technique has proven to be a valuable tool for making multiphase numerical simulations more tractable and efficient. This study examines the assumptions of the star‐delta technique and exposes its effects in a 3‐D,...
Gespeichert in:
Veröffentlicht in: | Water resources research 2017-04, Vol.53 (4), p.2917-2939 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2939 |
---|---|
container_issue | 4 |
container_start_page | 2917 |
container_title | Water resources research |
container_volume | 53 |
creator | Walton, Kenneth M. Unger, Andre J. A. Ioannidis, Marios A. Parker, Beth L. |
description | Algebraic elimination of nodes at discrete fracture intersections via the star‐delta technique has proven to be a valuable tool for making multiphase numerical simulations more tractable and efficient. This study examines the assumptions of the star‐delta technique and exposes its effects in a 3‐D, multiphase context for advective and dispersive/diffusive fluxes. Key issues of relative permeability‐saturation‐capillary pressure (kr‐S‐Pc) and capillary barriers at fracture‐fracture intersections are discussed. This study uses a multiphase compositional, finite difference numerical model in discrete fracture network (DFN) and discrete fracture‐matrix (DFM) modes. It verifies that the numerical model replicates analytical solutions and performs adequately in convergence exercises (conservative and decaying tracer, one and two‐phase flow, DFM and DFN domains). The study culminates in simulations of a two‐phase laboratory experiment in which a fluid invades a simple fracture intersection. The experiment and simulations evoke different invading fluid flow paths by varying fracture apertures as oil invades water‐filled fractures and as water invades air‐filled fractures. Results indicate that the node elimination technique as implemented in numerical model correctly reproduces the long‐term flow path of the invading fluid, but that short‐term temporal effects of the capillary traps and barriers arising from the intersection node are lost.
Key Points
Star‐delta elimination technique shows first‐order convergence for diffusive/dispersive transport and multiphase advective flow
Elimination at intersections precludes conduit flow and short‐term capillary traps, but redirects invading NAPLs appropriately
Elimination removes short‐term capillary barriers and is not recommended for transient simulation of water invading dry fractures |
doi_str_mv | 10.1002/2016WR020088 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1899831919</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1899831919</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3680-776eef633233d16a77651f5ccd5f1cc5244b2a30522ae503a487cba9a491e1af3</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsFZv_oAFr0Znv5LsUYofhYJQlJ4kTLe7uiXJxt2E0n9vSj148jTM8z4Mw0vINYM7BsDvObB8tQQOUJYnZMK0lFmhC3FKJgBSZEzo4pxcpLQFYFLlxYR8zJsOTU-Do7b2jW-x9-0ndXGEQ7TUt72NyZreh5a2YWPTiGgz1L3vvjBZakLTheQPOdbU1WFHkx9zPJBLcuawTvbqd07J-9Pj2-wlW7w-z2cPiwxFXkJWFLm1LheCC7FhOY67Yk4Zs1GOGaO4lGuOAhTnaBUIlGVh1qhRamYZOjElN8e7XQzfg019tQ1DHB9KFSu1LgXTTI_W7dEyMaQUrau66BuM-4pBdSiw-lvgqIujvvO13f_rVqvlbMm5KkH8AJVucyg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899831919</pqid></control><display><type>article</type><title>Impact of eliminating fracture intersection nodes in multiphase compositional flow simulation</title><source>Access via Wiley Online Library</source><source>Wiley-Blackwell AGU Digital Library</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Walton, Kenneth M. ; Unger, Andre J. A. ; Ioannidis, Marios A. ; Parker, Beth L.</creator><creatorcontrib>Walton, Kenneth M. ; Unger, Andre J. A. ; Ioannidis, Marios A. ; Parker, Beth L.</creatorcontrib><description>Algebraic elimination of nodes at discrete fracture intersections via the star‐delta technique has proven to be a valuable tool for making multiphase numerical simulations more tractable and efficient. This study examines the assumptions of the star‐delta technique and exposes its effects in a 3‐D, multiphase context for advective and dispersive/diffusive fluxes. Key issues of relative permeability‐saturation‐capillary pressure (kr‐S‐Pc) and capillary barriers at fracture‐fracture intersections are discussed. This study uses a multiphase compositional, finite difference numerical model in discrete fracture network (DFN) and discrete fracture‐matrix (DFM) modes. It verifies that the numerical model replicates analytical solutions and performs adequately in convergence exercises (conservative and decaying tracer, one and two‐phase flow, DFM and DFN domains). The study culminates in simulations of a two‐phase laboratory experiment in which a fluid invades a simple fracture intersection. The experiment and simulations evoke different invading fluid flow paths by varying fracture apertures as oil invades water‐filled fractures and as water invades air‐filled fractures. Results indicate that the node elimination technique as implemented in numerical model correctly reproduces the long‐term flow path of the invading fluid, but that short‐term temporal effects of the capillary traps and barriers arising from the intersection node are lost.
Key Points
Star‐delta elimination technique shows first‐order convergence for diffusive/dispersive transport and multiphase advective flow
Elimination at intersections precludes conduit flow and short‐term capillary traps, but redirects invading NAPLs appropriately
Elimination removes short‐term capillary barriers and is not recommended for transient simulation of water invading dry fractures</description><identifier>ISSN: 0043-1397</identifier><identifier>EISSN: 1944-7973</identifier><identifier>DOI: 10.1002/2016WR020088</identifier><language>eng</language><publisher>Washington: John Wiley & Sons, Inc</publisher><subject>Barriers ; Capillary pressure ; contaminant flow and transport ; discrete fracture‐matrix ; Exact solutions ; Finite difference method ; Flow paths ; Flow simulation ; Fluid dynamics ; Fluid flow ; fracture intersection ; Fractures ; Intersections ; Mathematical models ; Membrane permeability ; Modes ; Multiphase ; Nodes ; numerical modeling ; Numerical models ; Numerical simulations ; Permeability ; Saturation ; Short term ; Simulation ; Tracers</subject><ispartof>Water resources research, 2017-04, Vol.53 (4), p.2917-2939</ispartof><rights>2017. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3680-776eef633233d16a77651f5ccd5f1cc5244b2a30522ae503a487cba9a491e1af3</citedby><cites>FETCH-LOGICAL-a3680-776eef633233d16a77651f5ccd5f1cc5244b2a30522ae503a487cba9a491e1af3</cites><orcidid>0000-0002-1429-958X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2016WR020088$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2016WR020088$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,11514,27924,27925,45574,45575,46468,46892</link.rule.ids></links><search><creatorcontrib>Walton, Kenneth M.</creatorcontrib><creatorcontrib>Unger, Andre J. A.</creatorcontrib><creatorcontrib>Ioannidis, Marios A.</creatorcontrib><creatorcontrib>Parker, Beth L.</creatorcontrib><title>Impact of eliminating fracture intersection nodes in multiphase compositional flow simulation</title><title>Water resources research</title><description>Algebraic elimination of nodes at discrete fracture intersections via the star‐delta technique has proven to be a valuable tool for making multiphase numerical simulations more tractable and efficient. This study examines the assumptions of the star‐delta technique and exposes its effects in a 3‐D, multiphase context for advective and dispersive/diffusive fluxes. Key issues of relative permeability‐saturation‐capillary pressure (kr‐S‐Pc) and capillary barriers at fracture‐fracture intersections are discussed. This study uses a multiphase compositional, finite difference numerical model in discrete fracture network (DFN) and discrete fracture‐matrix (DFM) modes. It verifies that the numerical model replicates analytical solutions and performs adequately in convergence exercises (conservative and decaying tracer, one and two‐phase flow, DFM and DFN domains). The study culminates in simulations of a two‐phase laboratory experiment in which a fluid invades a simple fracture intersection. The experiment and simulations evoke different invading fluid flow paths by varying fracture apertures as oil invades water‐filled fractures and as water invades air‐filled fractures. Results indicate that the node elimination technique as implemented in numerical model correctly reproduces the long‐term flow path of the invading fluid, but that short‐term temporal effects of the capillary traps and barriers arising from the intersection node are lost.
Key Points
Star‐delta elimination technique shows first‐order convergence for diffusive/dispersive transport and multiphase advective flow
Elimination at intersections precludes conduit flow and short‐term capillary traps, but redirects invading NAPLs appropriately
Elimination removes short‐term capillary barriers and is not recommended for transient simulation of water invading dry fractures</description><subject>Barriers</subject><subject>Capillary pressure</subject><subject>contaminant flow and transport</subject><subject>discrete fracture‐matrix</subject><subject>Exact solutions</subject><subject>Finite difference method</subject><subject>Flow paths</subject><subject>Flow simulation</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>fracture intersection</subject><subject>Fractures</subject><subject>Intersections</subject><subject>Mathematical models</subject><subject>Membrane permeability</subject><subject>Modes</subject><subject>Multiphase</subject><subject>Nodes</subject><subject>numerical modeling</subject><subject>Numerical models</subject><subject>Numerical simulations</subject><subject>Permeability</subject><subject>Saturation</subject><subject>Short term</subject><subject>Simulation</subject><subject>Tracers</subject><issn>0043-1397</issn><issn>1944-7973</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kE1Lw0AQhhdRsFZv_oAFr0Znv5LsUYofhYJQlJ4kTLe7uiXJxt2E0n9vSj148jTM8z4Mw0vINYM7BsDvObB8tQQOUJYnZMK0lFmhC3FKJgBSZEzo4pxcpLQFYFLlxYR8zJsOTU-Do7b2jW-x9-0ndXGEQ7TUt72NyZreh5a2YWPTiGgz1L3vvjBZakLTheQPOdbU1WFHkx9zPJBLcuawTvbqd07J-9Pj2-wlW7w-z2cPiwxFXkJWFLm1LheCC7FhOY67Yk4Zs1GOGaO4lGuOAhTnaBUIlGVh1qhRamYZOjElN8e7XQzfg019tQ1DHB9KFSu1LgXTTI_W7dEyMaQUrau66BuM-4pBdSiw-lvgqIujvvO13f_rVqvlbMm5KkH8AJVucyg</recordid><startdate>201704</startdate><enddate>201704</enddate><creator>Walton, Kenneth M.</creator><creator>Unger, Andre J. A.</creator><creator>Ioannidis, Marios A.</creator><creator>Parker, Beth L.</creator><general>John Wiley & Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QL</scope><scope>7T7</scope><scope>7TG</scope><scope>7U9</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H94</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0002-1429-958X</orcidid></search><sort><creationdate>201704</creationdate><title>Impact of eliminating fracture intersection nodes in multiphase compositional flow simulation</title><author>Walton, Kenneth M. ; Unger, Andre J. A. ; Ioannidis, Marios A. ; Parker, Beth L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3680-776eef633233d16a77651f5ccd5f1cc5244b2a30522ae503a487cba9a491e1af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Barriers</topic><topic>Capillary pressure</topic><topic>contaminant flow and transport</topic><topic>discrete fracture‐matrix</topic><topic>Exact solutions</topic><topic>Finite difference method</topic><topic>Flow paths</topic><topic>Flow simulation</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>fracture intersection</topic><topic>Fractures</topic><topic>Intersections</topic><topic>Mathematical models</topic><topic>Membrane permeability</topic><topic>Modes</topic><topic>Multiphase</topic><topic>Nodes</topic><topic>numerical modeling</topic><topic>Numerical models</topic><topic>Numerical simulations</topic><topic>Permeability</topic><topic>Saturation</topic><topic>Short term</topic><topic>Simulation</topic><topic>Tracers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Walton, Kenneth M.</creatorcontrib><creatorcontrib>Unger, Andre J. A.</creatorcontrib><creatorcontrib>Ioannidis, Marios A.</creatorcontrib><creatorcontrib>Parker, Beth L.</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Water resources research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Walton, Kenneth M.</au><au>Unger, Andre J. A.</au><au>Ioannidis, Marios A.</au><au>Parker, Beth L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of eliminating fracture intersection nodes in multiphase compositional flow simulation</atitle><jtitle>Water resources research</jtitle><date>2017-04</date><risdate>2017</risdate><volume>53</volume><issue>4</issue><spage>2917</spage><epage>2939</epage><pages>2917-2939</pages><issn>0043-1397</issn><eissn>1944-7973</eissn><abstract>Algebraic elimination of nodes at discrete fracture intersections via the star‐delta technique has proven to be a valuable tool for making multiphase numerical simulations more tractable and efficient. This study examines the assumptions of the star‐delta technique and exposes its effects in a 3‐D, multiphase context for advective and dispersive/diffusive fluxes. Key issues of relative permeability‐saturation‐capillary pressure (kr‐S‐Pc) and capillary barriers at fracture‐fracture intersections are discussed. This study uses a multiphase compositional, finite difference numerical model in discrete fracture network (DFN) and discrete fracture‐matrix (DFM) modes. It verifies that the numerical model replicates analytical solutions and performs adequately in convergence exercises (conservative and decaying tracer, one and two‐phase flow, DFM and DFN domains). The study culminates in simulations of a two‐phase laboratory experiment in which a fluid invades a simple fracture intersection. The experiment and simulations evoke different invading fluid flow paths by varying fracture apertures as oil invades water‐filled fractures and as water invades air‐filled fractures. Results indicate that the node elimination technique as implemented in numerical model correctly reproduces the long‐term flow path of the invading fluid, but that short‐term temporal effects of the capillary traps and barriers arising from the intersection node are lost.
Key Points
Star‐delta elimination technique shows first‐order convergence for diffusive/dispersive transport and multiphase advective flow
Elimination at intersections precludes conduit flow and short‐term capillary traps, but redirects invading NAPLs appropriately
Elimination removes short‐term capillary barriers and is not recommended for transient simulation of water invading dry fractures</abstract><cop>Washington</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/2016WR020088</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-1429-958X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0043-1397 |
ispartof | Water resources research, 2017-04, Vol.53 (4), p.2917-2939 |
issn | 0043-1397 1944-7973 |
language | eng |
recordid | cdi_proquest_journals_1899831919 |
source | Access via Wiley Online Library; Wiley-Blackwell AGU Digital Library; EZB-FREE-00999 freely available EZB journals |
subjects | Barriers Capillary pressure contaminant flow and transport discrete fracture‐matrix Exact solutions Finite difference method Flow paths Flow simulation Fluid dynamics Fluid flow fracture intersection Fractures Intersections Mathematical models Membrane permeability Modes Multiphase Nodes numerical modeling Numerical models Numerical simulations Permeability Saturation Short term Simulation Tracers |
title | Impact of eliminating fracture intersection nodes in multiphase compositional flow simulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T14%3A35%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20eliminating%20fracture%20intersection%20nodes%20in%20multiphase%20compositional%20flow%20simulation&rft.jtitle=Water%20resources%20research&rft.au=Walton,%20Kenneth%20M.&rft.date=2017-04&rft.volume=53&rft.issue=4&rft.spage=2917&rft.epage=2939&rft.pages=2917-2939&rft.issn=0043-1397&rft.eissn=1944-7973&rft_id=info:doi/10.1002/2016WR020088&rft_dat=%3Cproquest_cross%3E1899831919%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1899831919&rft_id=info:pmid/&rfr_iscdi=true |