A 3-D Coupled Magneto-Fluid-Thermal Analysis of a 220 kV Three-Phase Three-Limb Transformer under DC Bias

This paper takes a typical 220 kV three-phase three-limb oil-immersed transformer as an example, this paper building transient field-circuit coupled model and 3D coupled magneto -fluid-thermal model. Considering a nonlinear B-H curve, the magneto model uses the field-circuit coupled finite element m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energies (Basel) 2017-03, Vol.10 (4), p.422
Hauptverfasser: Gong, Ruohan, Ruan, Jiangjun, Chen, Jingzhou, Quan, Yu, Wang, Jian, Jin, Shuo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page 422
container_title Energies (Basel)
container_volume 10
creator Gong, Ruohan
Ruan, Jiangjun
Chen, Jingzhou
Quan, Yu
Wang, Jian
Jin, Shuo
description This paper takes a typical 220 kV three-phase three-limb oil-immersed transformer as an example, this paper building transient field-circuit coupled model and 3D coupled magneto -fluid-thermal model. Considering a nonlinear B-H curve, the magneto model uses the field-circuit coupled finite element method (FEM) to calculate the magnetic flux distribution of the core and the current distribution of the windings when the transformer is at a rated current and under direct current (DC) bias. Taking the electric power losses of the core and windings as a heat source, the temperature inside the transformer and the velocity of the transformer oil are analyzed by the finite volume method (FVM) in a fluid-thermal field. In order to improve the accuracy of the calculation results, the influence of temperature on the electrical resistivity of the windings and the physical parameter of the transformer oil are taken into account in the paper. Meanwhile, the convective heat transfer coefficient of the FVM model boundary is determined by its temperature. By iterative computations, the model is updated according to the thermal field calculation result until the maximum difference in hot spot temperature between the two adjacent steps is less than 0.01 K. The result calculated by the coupling method agrees well with the empirical equation result according to IEC 60076-7.
doi_str_mv 10.3390/en10040422
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1899818642</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1899818642</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-b0684e1b173a8b3632f4536298f34f62e837214dbf6295070913dc1693f5f3893</originalsourceid><addsrcrecordid>eNpNkDFPwzAUhC0EElXpwi-wxIZksP0cxx5LSgtSEQyBNXIam6YkcbGTof-eoFaCN9z7htNJdwhdM3oHoOm97RilggrOz9CEaS0Joymc_-NLNItxR8cDYAAwQfUcA1ngzA_7xlb4xXx2tvdk2Qx1RfKtDa1p8LwzzSHWEXuHDeac4q8PnG-DteRta6I98bpuS5wH00XnQ2sDHrpq1EWGH2oTr9CFM020s9OfovflY549kfXr6jmbr8mG66QnJZVKWFayFIwqQQJ3IgHJtXIgnORWQcqZqMqRdUJTqhlUGyY1uMSB0jBFN8fcffDfg419sfNDGBvEgimtFVNS8NF1e3Rtgo8xWFfsQ92acCgYLX7XLP7WhB_xnWKa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899818642</pqid></control><display><type>article</type><title>A 3-D Coupled Magneto-Fluid-Thermal Analysis of a 220 kV Three-Phase Three-Limb Transformer under DC Bias</title><source>DOAJ Directory of Open Access Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Gong, Ruohan ; Ruan, Jiangjun ; Chen, Jingzhou ; Quan, Yu ; Wang, Jian ; Jin, Shuo</creator><creatorcontrib>Gong, Ruohan ; Ruan, Jiangjun ; Chen, Jingzhou ; Quan, Yu ; Wang, Jian ; Jin, Shuo</creatorcontrib><description>This paper takes a typical 220 kV three-phase three-limb oil-immersed transformer as an example, this paper building transient field-circuit coupled model and 3D coupled magneto -fluid-thermal model. Considering a nonlinear B-H curve, the magneto model uses the field-circuit coupled finite element method (FEM) to calculate the magnetic flux distribution of the core and the current distribution of the windings when the transformer is at a rated current and under direct current (DC) bias. Taking the electric power losses of the core and windings as a heat source, the temperature inside the transformer and the velocity of the transformer oil are analyzed by the finite volume method (FVM) in a fluid-thermal field. In order to improve the accuracy of the calculation results, the influence of temperature on the electrical resistivity of the windings and the physical parameter of the transformer oil are taken into account in the paper. Meanwhile, the convective heat transfer coefficient of the FVM model boundary is determined by its temperature. By iterative computations, the model is updated according to the thermal field calculation result until the maximum difference in hot spot temperature between the two adjacent steps is less than 0.01 K. The result calculated by the coupling method agrees well with the empirical equation result according to IEC 60076-7.</description><identifier>ISSN: 1996-1073</identifier><identifier>EISSN: 1996-1073</identifier><identifier>DOI: 10.3390/en10040422</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Bias ; Convective heat transfer ; Current distribution ; Direct current ; Electric power ; Electric power loss ; Electrical resistivity ; Empirical equations ; Finite volume method ; Heat transfer ; Heat transfer coefficients ; Magnetic flux ; Oil ; Physical properties ; Temperature ; Thermal analysis</subject><ispartof>Energies (Basel), 2017-03, Vol.10 (4), p.422</ispartof><rights>Copyright MDPI AG 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-b0684e1b173a8b3632f4536298f34f62e837214dbf6295070913dc1693f5f3893</citedby><cites>FETCH-LOGICAL-c295t-b0684e1b173a8b3632f4536298f34f62e837214dbf6295070913dc1693f5f3893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids></links><search><creatorcontrib>Gong, Ruohan</creatorcontrib><creatorcontrib>Ruan, Jiangjun</creatorcontrib><creatorcontrib>Chen, Jingzhou</creatorcontrib><creatorcontrib>Quan, Yu</creatorcontrib><creatorcontrib>Wang, Jian</creatorcontrib><creatorcontrib>Jin, Shuo</creatorcontrib><title>A 3-D Coupled Magneto-Fluid-Thermal Analysis of a 220 kV Three-Phase Three-Limb Transformer under DC Bias</title><title>Energies (Basel)</title><description>This paper takes a typical 220 kV three-phase three-limb oil-immersed transformer as an example, this paper building transient field-circuit coupled model and 3D coupled magneto -fluid-thermal model. Considering a nonlinear B-H curve, the magneto model uses the field-circuit coupled finite element method (FEM) to calculate the magnetic flux distribution of the core and the current distribution of the windings when the transformer is at a rated current and under direct current (DC) bias. Taking the electric power losses of the core and windings as a heat source, the temperature inside the transformer and the velocity of the transformer oil are analyzed by the finite volume method (FVM) in a fluid-thermal field. In order to improve the accuracy of the calculation results, the influence of temperature on the electrical resistivity of the windings and the physical parameter of the transformer oil are taken into account in the paper. Meanwhile, the convective heat transfer coefficient of the FVM model boundary is determined by its temperature. By iterative computations, the model is updated according to the thermal field calculation result until the maximum difference in hot spot temperature between the two adjacent steps is less than 0.01 K. The result calculated by the coupling method agrees well with the empirical equation result according to IEC 60076-7.</description><subject>Bias</subject><subject>Convective heat transfer</subject><subject>Current distribution</subject><subject>Direct current</subject><subject>Electric power</subject><subject>Electric power loss</subject><subject>Electrical resistivity</subject><subject>Empirical equations</subject><subject>Finite volume method</subject><subject>Heat transfer</subject><subject>Heat transfer coefficients</subject><subject>Magnetic flux</subject><subject>Oil</subject><subject>Physical properties</subject><subject>Temperature</subject><subject>Thermal analysis</subject><issn>1996-1073</issn><issn>1996-1073</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpNkDFPwzAUhC0EElXpwi-wxIZksP0cxx5LSgtSEQyBNXIam6YkcbGTof-eoFaCN9z7htNJdwhdM3oHoOm97RilggrOz9CEaS0Joymc_-NLNItxR8cDYAAwQfUcA1ngzA_7xlb4xXx2tvdk2Qx1RfKtDa1p8LwzzSHWEXuHDeac4q8PnG-DteRta6I98bpuS5wH00XnQ2sDHrpq1EWGH2oTr9CFM020s9OfovflY549kfXr6jmbr8mG66QnJZVKWFayFIwqQQJ3IgHJtXIgnORWQcqZqMqRdUJTqhlUGyY1uMSB0jBFN8fcffDfg419sfNDGBvEgimtFVNS8NF1e3Rtgo8xWFfsQ92acCgYLX7XLP7WhB_xnWKa</recordid><startdate>20170323</startdate><enddate>20170323</enddate><creator>Gong, Ruohan</creator><creator>Ruan, Jiangjun</creator><creator>Chen, Jingzhou</creator><creator>Quan, Yu</creator><creator>Wang, Jian</creator><creator>Jin, Shuo</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20170323</creationdate><title>A 3-D Coupled Magneto-Fluid-Thermal Analysis of a 220 kV Three-Phase Three-Limb Transformer under DC Bias</title><author>Gong, Ruohan ; Ruan, Jiangjun ; Chen, Jingzhou ; Quan, Yu ; Wang, Jian ; Jin, Shuo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-b0684e1b173a8b3632f4536298f34f62e837214dbf6295070913dc1693f5f3893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Bias</topic><topic>Convective heat transfer</topic><topic>Current distribution</topic><topic>Direct current</topic><topic>Electric power</topic><topic>Electric power loss</topic><topic>Electrical resistivity</topic><topic>Empirical equations</topic><topic>Finite volume method</topic><topic>Heat transfer</topic><topic>Heat transfer coefficients</topic><topic>Magnetic flux</topic><topic>Oil</topic><topic>Physical properties</topic><topic>Temperature</topic><topic>Thermal analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gong, Ruohan</creatorcontrib><creatorcontrib>Ruan, Jiangjun</creatorcontrib><creatorcontrib>Chen, Jingzhou</creatorcontrib><creatorcontrib>Quan, Yu</creatorcontrib><creatorcontrib>Wang, Jian</creatorcontrib><creatorcontrib>Jin, Shuo</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Energies (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gong, Ruohan</au><au>Ruan, Jiangjun</au><au>Chen, Jingzhou</au><au>Quan, Yu</au><au>Wang, Jian</au><au>Jin, Shuo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A 3-D Coupled Magneto-Fluid-Thermal Analysis of a 220 kV Three-Phase Three-Limb Transformer under DC Bias</atitle><jtitle>Energies (Basel)</jtitle><date>2017-03-23</date><risdate>2017</risdate><volume>10</volume><issue>4</issue><spage>422</spage><pages>422-</pages><issn>1996-1073</issn><eissn>1996-1073</eissn><abstract>This paper takes a typical 220 kV three-phase three-limb oil-immersed transformer as an example, this paper building transient field-circuit coupled model and 3D coupled magneto -fluid-thermal model. Considering a nonlinear B-H curve, the magneto model uses the field-circuit coupled finite element method (FEM) to calculate the magnetic flux distribution of the core and the current distribution of the windings when the transformer is at a rated current and under direct current (DC) bias. Taking the electric power losses of the core and windings as a heat source, the temperature inside the transformer and the velocity of the transformer oil are analyzed by the finite volume method (FVM) in a fluid-thermal field. In order to improve the accuracy of the calculation results, the influence of temperature on the electrical resistivity of the windings and the physical parameter of the transformer oil are taken into account in the paper. Meanwhile, the convective heat transfer coefficient of the FVM model boundary is determined by its temperature. By iterative computations, the model is updated according to the thermal field calculation result until the maximum difference in hot spot temperature between the two adjacent steps is less than 0.01 K. The result calculated by the coupling method agrees well with the empirical equation result according to IEC 60076-7.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/en10040422</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1073
ispartof Energies (Basel), 2017-03, Vol.10 (4), p.422
issn 1996-1073
1996-1073
language eng
recordid cdi_proquest_journals_1899818642
source DOAJ Directory of Open Access Journals; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals
subjects Bias
Convective heat transfer
Current distribution
Direct current
Electric power
Electric power loss
Electrical resistivity
Empirical equations
Finite volume method
Heat transfer
Heat transfer coefficients
Magnetic flux
Oil
Physical properties
Temperature
Thermal analysis
title A 3-D Coupled Magneto-Fluid-Thermal Analysis of a 220 kV Three-Phase Three-Limb Transformer under DC Bias
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A28%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%203-D%20Coupled%20Magneto-Fluid-Thermal%20Analysis%20of%20a%20220%20kV%20Three-Phase%20Three-Limb%20Transformer%20under%20DC%20Bias&rft.jtitle=Energies%20(Basel)&rft.au=Gong,%20Ruohan&rft.date=2017-03-23&rft.volume=10&rft.issue=4&rft.spage=422&rft.pages=422-&rft.issn=1996-1073&rft.eissn=1996-1073&rft_id=info:doi/10.3390/en10040422&rft_dat=%3Cproquest_cross%3E1899818642%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1899818642&rft_id=info:pmid/&rfr_iscdi=true