Oceanic eddy-driven atmospheric secondary circulation in the winter Kuroshio Extension region

In the winter Kuroshio Extension region, the atmospheric response to oceanic eddies is studied using reanalysis and satellite data. The detected eddies in this region are mostly under the force of northwesterly wind, with the sea surface temperature (SST) anomaly located within the eddy. By examinin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of oceanography 2017-06, Vol.73 (3), p.295-307
Hauptverfasser: Chen, Longjing, Jia, Yinglai, Liu, Qinyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 307
container_issue 3
container_start_page 295
container_title Journal of oceanography
container_volume 73
creator Chen, Longjing
Jia, Yinglai
Liu, Qinyu
description In the winter Kuroshio Extension region, the atmospheric response to oceanic eddies is studied using reanalysis and satellite data. The detected eddies in this region are mostly under the force of northwesterly wind, with the sea surface temperature (SST) anomaly located within the eddy. By examining the patterns of surface wind divergence, three types of atmospheric response are identified. The first type, which occupies 60%, is characterized by significant sea surface wind convergence and divergence at the edge and a vertical secondary circulation (SC) aloft, supporting the “vertical momentum mixing mechanism”. The SCs on anticyclonic eddies (AEs) can reach up to 300 hPa, but those on cyclonic eddies (CEs) are limited to 700 hPa. This can be explained by analyzing vertical eddy heat transport: When northwesterly wind passes the warmer center of an AE, it is from the cold to warm sea surface, resulting in stronger evaporation and convection, triggering stronger upward velocity and moist static heat flux. For the cases of CEs, the wind blows from warm to cold, which means less instability and less evaporation, resulting in weaker SCs. The second type, which occupies 10%, is characterized by divergence and a sea level pressure anomaly in the center, supported by the “pressure adjustment mechanism”. The other 30% are mostly weak eddies, and the atmospheric variation aloft is unrelated to the SST anomaly. Our work provides evidence for the different atmospheric responses over oceanic eddies and explains why SCs over AEs are much stronger than those over CEs by vertical heat flux analysis.
doi_str_mv 10.1007/s10872-016-0403-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1899689979</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1899689979</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-51b350a1df4cfb401cd3140d3d0442dea0f3f6a6fcc08648670b4397593a355a3</originalsourceid><addsrcrecordid>eNp1UE1LAzEQDaJgrf4AbwHP0UmT3SRHKfUDC14UvEhIk2yb0mZrsqu2v96UevDiYXgw896bmYfQJYVrCiBuMgUpRgRoTYADI7sjNKCVYETW8u0YDUCViWQCTtFZzksAUFKwAXp_tt7EYLF3bktcCp8-YtOt27xZ-FT62ds2OpO22IZk-5XpQhtxiLhbePwVYucTfupTmxehxZPvzse8JyQ_L3COThqzyv7iF4fo9W7yMn4g0-f7x_HtlFgOqiMVnbEKDHUNt82MA7WOUQ6OOeB85LyBhjW1qRtrQdZc1gJmnClRKWZYVRk2RFcH301qP3qfO71s-xTLSk2lUnUpoQqLHli2nJuTb_QmhXV5TVPQ-xT1IUVdUtT7FPWuaEYHTS7cOPfpj_O_oh9e1nbC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899689979</pqid></control><display><type>article</type><title>Oceanic eddy-driven atmospheric secondary circulation in the winter Kuroshio Extension region</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Chen, Longjing ; Jia, Yinglai ; Liu, Qinyu</creator><creatorcontrib>Chen, Longjing ; Jia, Yinglai ; Liu, Qinyu</creatorcontrib><description>In the winter Kuroshio Extension region, the atmospheric response to oceanic eddies is studied using reanalysis and satellite data. The detected eddies in this region are mostly under the force of northwesterly wind, with the sea surface temperature (SST) anomaly located within the eddy. By examining the patterns of surface wind divergence, three types of atmospheric response are identified. The first type, which occupies 60%, is characterized by significant sea surface wind convergence and divergence at the edge and a vertical secondary circulation (SC) aloft, supporting the “vertical momentum mixing mechanism”. The SCs on anticyclonic eddies (AEs) can reach up to 300 hPa, but those on cyclonic eddies (CEs) are limited to 700 hPa. This can be explained by analyzing vertical eddy heat transport: When northwesterly wind passes the warmer center of an AE, it is from the cold to warm sea surface, resulting in stronger evaporation and convection, triggering stronger upward velocity and moist static heat flux. For the cases of CEs, the wind blows from warm to cold, which means less instability and less evaporation, resulting in weaker SCs. The second type, which occupies 10%, is characterized by divergence and a sea level pressure anomaly in the center, supported by the “pressure adjustment mechanism”. The other 30% are mostly weak eddies, and the atmospheric variation aloft is unrelated to the SST anomaly. Our work provides evidence for the different atmospheric responses over oceanic eddies and explains why SCs over AEs are much stronger than those over CEs by vertical heat flux analysis.</description><identifier>ISSN: 0916-8370</identifier><identifier>EISSN: 1573-868X</identifier><identifier>DOI: 10.1007/s10872-016-0403-z</identifier><language>eng</language><publisher>Tokyo: Springer Japan</publisher><subject>Atmospheric circulation ; Convection ; Current rings ; Divergence ; Earth and Environmental Science ; Earth Sciences ; Eddies ; Evaporation ; Freshwater &amp; Marine Ecology ; Heat ; Heat flux ; Heat transfer ; Heat transport ; Induction heating ; Instability ; Momentum ; Ocean circulation ; Oceanic eddies ; Oceanography ; Original Article ; Pressure ; Satellites ; Sea level ; Sea level pressure ; Sea surface ; Sea surface temperature ; Stability ; Surface wind ; Wind ; Winter</subject><ispartof>Journal of oceanography, 2017-06, Vol.73 (3), p.295-307</ispartof><rights>The Oceanographic Society of Japan and Springer Japan 2016</rights><rights>Journal of Oceanography is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-51b350a1df4cfb401cd3140d3d0442dea0f3f6a6fcc08648670b4397593a355a3</citedby><cites>FETCH-LOGICAL-c409t-51b350a1df4cfb401cd3140d3d0442dea0f3f6a6fcc08648670b4397593a355a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10872-016-0403-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10872-016-0403-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Chen, Longjing</creatorcontrib><creatorcontrib>Jia, Yinglai</creatorcontrib><creatorcontrib>Liu, Qinyu</creatorcontrib><title>Oceanic eddy-driven atmospheric secondary circulation in the winter Kuroshio Extension region</title><title>Journal of oceanography</title><addtitle>J Oceanogr</addtitle><description>In the winter Kuroshio Extension region, the atmospheric response to oceanic eddies is studied using reanalysis and satellite data. The detected eddies in this region are mostly under the force of northwesterly wind, with the sea surface temperature (SST) anomaly located within the eddy. By examining the patterns of surface wind divergence, three types of atmospheric response are identified. The first type, which occupies 60%, is characterized by significant sea surface wind convergence and divergence at the edge and a vertical secondary circulation (SC) aloft, supporting the “vertical momentum mixing mechanism”. The SCs on anticyclonic eddies (AEs) can reach up to 300 hPa, but those on cyclonic eddies (CEs) are limited to 700 hPa. This can be explained by analyzing vertical eddy heat transport: When northwesterly wind passes the warmer center of an AE, it is from the cold to warm sea surface, resulting in stronger evaporation and convection, triggering stronger upward velocity and moist static heat flux. For the cases of CEs, the wind blows from warm to cold, which means less instability and less evaporation, resulting in weaker SCs. The second type, which occupies 10%, is characterized by divergence and a sea level pressure anomaly in the center, supported by the “pressure adjustment mechanism”. The other 30% are mostly weak eddies, and the atmospheric variation aloft is unrelated to the SST anomaly. Our work provides evidence for the different atmospheric responses over oceanic eddies and explains why SCs over AEs are much stronger than those over CEs by vertical heat flux analysis.</description><subject>Atmospheric circulation</subject><subject>Convection</subject><subject>Current rings</subject><subject>Divergence</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Eddies</subject><subject>Evaporation</subject><subject>Freshwater &amp; Marine Ecology</subject><subject>Heat</subject><subject>Heat flux</subject><subject>Heat transfer</subject><subject>Heat transport</subject><subject>Induction heating</subject><subject>Instability</subject><subject>Momentum</subject><subject>Ocean circulation</subject><subject>Oceanic eddies</subject><subject>Oceanography</subject><subject>Original Article</subject><subject>Pressure</subject><subject>Satellites</subject><subject>Sea level</subject><subject>Sea level pressure</subject><subject>Sea surface</subject><subject>Sea surface temperature</subject><subject>Stability</subject><subject>Surface wind</subject><subject>Wind</subject><subject>Winter</subject><issn>0916-8370</issn><issn>1573-868X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1UE1LAzEQDaJgrf4AbwHP0UmT3SRHKfUDC14UvEhIk2yb0mZrsqu2v96UevDiYXgw896bmYfQJYVrCiBuMgUpRgRoTYADI7sjNKCVYETW8u0YDUCViWQCTtFZzksAUFKwAXp_tt7EYLF3bktcCp8-YtOt27xZ-FT62ds2OpO22IZk-5XpQhtxiLhbePwVYucTfupTmxehxZPvzse8JyQ_L3COThqzyv7iF4fo9W7yMn4g0-f7x_HtlFgOqiMVnbEKDHUNt82MA7WOUQ6OOeB85LyBhjW1qRtrQdZc1gJmnClRKWZYVRk2RFcH301qP3qfO71s-xTLSk2lUnUpoQqLHli2nJuTb_QmhXV5TVPQ-xT1IUVdUtT7FPWuaEYHTS7cOPfpj_O_oh9e1nbC</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Chen, Longjing</creator><creator>Jia, Yinglai</creator><creator>Liu, Qinyu</creator><general>Springer Japan</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7TN</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope></search><sort><creationdate>20170601</creationdate><title>Oceanic eddy-driven atmospheric secondary circulation in the winter Kuroshio Extension region</title><author>Chen, Longjing ; Jia, Yinglai ; Liu, Qinyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-51b350a1df4cfb401cd3140d3d0442dea0f3f6a6fcc08648670b4397593a355a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Atmospheric circulation</topic><topic>Convection</topic><topic>Current rings</topic><topic>Divergence</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Eddies</topic><topic>Evaporation</topic><topic>Freshwater &amp; Marine Ecology</topic><topic>Heat</topic><topic>Heat flux</topic><topic>Heat transfer</topic><topic>Heat transport</topic><topic>Induction heating</topic><topic>Instability</topic><topic>Momentum</topic><topic>Ocean circulation</topic><topic>Oceanic eddies</topic><topic>Oceanography</topic><topic>Original Article</topic><topic>Pressure</topic><topic>Satellites</topic><topic>Sea level</topic><topic>Sea level pressure</topic><topic>Sea surface</topic><topic>Sea surface temperature</topic><topic>Stability</topic><topic>Surface wind</topic><topic>Wind</topic><topic>Winter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Longjing</creatorcontrib><creatorcontrib>Jia, Yinglai</creatorcontrib><creatorcontrib>Liu, Qinyu</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Journal of oceanography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Longjing</au><au>Jia, Yinglai</au><au>Liu, Qinyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oceanic eddy-driven atmospheric secondary circulation in the winter Kuroshio Extension region</atitle><jtitle>Journal of oceanography</jtitle><stitle>J Oceanogr</stitle><date>2017-06-01</date><risdate>2017</risdate><volume>73</volume><issue>3</issue><spage>295</spage><epage>307</epage><pages>295-307</pages><issn>0916-8370</issn><eissn>1573-868X</eissn><abstract>In the winter Kuroshio Extension region, the atmospheric response to oceanic eddies is studied using reanalysis and satellite data. The detected eddies in this region are mostly under the force of northwesterly wind, with the sea surface temperature (SST) anomaly located within the eddy. By examining the patterns of surface wind divergence, three types of atmospheric response are identified. The first type, which occupies 60%, is characterized by significant sea surface wind convergence and divergence at the edge and a vertical secondary circulation (SC) aloft, supporting the “vertical momentum mixing mechanism”. The SCs on anticyclonic eddies (AEs) can reach up to 300 hPa, but those on cyclonic eddies (CEs) are limited to 700 hPa. This can be explained by analyzing vertical eddy heat transport: When northwesterly wind passes the warmer center of an AE, it is from the cold to warm sea surface, resulting in stronger evaporation and convection, triggering stronger upward velocity and moist static heat flux. For the cases of CEs, the wind blows from warm to cold, which means less instability and less evaporation, resulting in weaker SCs. The second type, which occupies 10%, is characterized by divergence and a sea level pressure anomaly in the center, supported by the “pressure adjustment mechanism”. The other 30% are mostly weak eddies, and the atmospheric variation aloft is unrelated to the SST anomaly. Our work provides evidence for the different atmospheric responses over oceanic eddies and explains why SCs over AEs are much stronger than those over CEs by vertical heat flux analysis.</abstract><cop>Tokyo</cop><pub>Springer Japan</pub><doi>10.1007/s10872-016-0403-z</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0916-8370
ispartof Journal of oceanography, 2017-06, Vol.73 (3), p.295-307
issn 0916-8370
1573-868X
language eng
recordid cdi_proquest_journals_1899689979
source Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings
subjects Atmospheric circulation
Convection
Current rings
Divergence
Earth and Environmental Science
Earth Sciences
Eddies
Evaporation
Freshwater & Marine Ecology
Heat
Heat flux
Heat transfer
Heat transport
Induction heating
Instability
Momentum
Ocean circulation
Oceanic eddies
Oceanography
Original Article
Pressure
Satellites
Sea level
Sea level pressure
Sea surface
Sea surface temperature
Stability
Surface wind
Wind
Winter
title Oceanic eddy-driven atmospheric secondary circulation in the winter Kuroshio Extension region
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T15%3A03%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oceanic%20eddy-driven%20atmospheric%20secondary%20circulation%20in%20the%20winter%20Kuroshio%20Extension%20region&rft.jtitle=Journal%20of%20oceanography&rft.au=Chen,%20Longjing&rft.date=2017-06-01&rft.volume=73&rft.issue=3&rft.spage=295&rft.epage=307&rft.pages=295-307&rft.issn=0916-8370&rft.eissn=1573-868X&rft_id=info:doi/10.1007/s10872-016-0403-z&rft_dat=%3Cproquest_cross%3E1899689979%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1899689979&rft_id=info:pmid/&rfr_iscdi=true