Validation of discrete element method by simulating a 2D assembly of randomly packed elliptical rods
This paper aims at establishing the predictive capability of the discrete element method (DEM) by validating the simulated responses of granular systems against experimental observations at both the macroscale and the microscale. A previously published biaxial shearing test on a 2D assembly of rando...
Gespeichert in:
Veröffentlicht in: | Acta geotechnica 2017-06, Vol.12 (3), p.541-557 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 557 |
---|---|
container_issue | 3 |
container_start_page | 541 |
container_title | Acta geotechnica |
container_volume | 12 |
creator | Li, Zhaofeng Wang, Yu-Hsing Li, Xia Yuan, Quan |
description | This paper aims at establishing the predictive capability of the discrete element method (DEM) by validating the simulated responses of granular systems against experimental observations at both the macroscale and the microscale. A previously published biaxial shearing test on a 2D assembly of randomly packed elliptical rods was chosen as the benchmark test. In carrying out the corresponding DEM simulations herein, the contact model was derived and then validated using finite element analysis; the associated parameters were calibrated experimentally. The flexible (membrane) boundary was modeled by a bonded-particle string with experimentally calibrated parameters. An iteration procedure was implemented to replicate the initial packing and also to satisfy the boundary conditions in the experiment. Overall, the DEM simulation is found effective in reproducing the stress–strain–volumetric response, the statistical observation on the fabric anisotropy and the strain localization. Furthermore, the closer the numerical packing is to the experimental one, the closer the response is reproduced, demonstrating the significance of the initial packing reconstruction. Still, there are some minor differences between the experiment and simulation, reflecting the limitations associated with the particle number and the measurement resolution used in the experiment when reproducing the initial packing. |
doi_str_mv | 10.1007/s11440-017-0542-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1899629067</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1899629067</sourcerecordid><originalsourceid>FETCH-LOGICAL-a339t-c70e3fe6608a0d9d4f59529222410c20cdfe16f21ca46b2997e2ceea75aee6233</originalsourceid><addsrcrecordid>eNp1kDtPwzAUhS0EEqXwA9gsMQeuH3HqEZWnVIkFWC3XvikpSRzsdOi_x1UQYmG6Z_i-c6VDyCWDawZQ3STGpIQCWFVAKXkhj8iMLRQrGBPi-Dfz8pScpbQFUIJLNSP-3baNt2MTehpq6pvkIo5IscUO-5F2OH4ET9d7mppu12aw31BL-R21KWG3bvcHLdrehy7nwbpP9Nlum2FsnG1pDD6dk5Patgkvfu6cvD3cvy6fitXL4_PydlVYIfRYuApQ1KgULCx47WVd6pJrzrlk4Dg4XyNTNWfOSrXmWlfIHaKtSououBBzcjX1DjF87TCNZht2sc8vDVtorbgGVWWKTZSLIaWItRli09m4NwzMYUwzjWnymOYwppHZ4ZOTMttvMP5p_lf6Bmphd6Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899629067</pqid></control><display><type>article</type><title>Validation of discrete element method by simulating a 2D assembly of randomly packed elliptical rods</title><source>SpringerLink Journals</source><creator>Li, Zhaofeng ; Wang, Yu-Hsing ; Li, Xia ; Yuan, Quan</creator><creatorcontrib>Li, Zhaofeng ; Wang, Yu-Hsing ; Li, Xia ; Yuan, Quan</creatorcontrib><description>This paper aims at establishing the predictive capability of the discrete element method (DEM) by validating the simulated responses of granular systems against experimental observations at both the macroscale and the microscale. A previously published biaxial shearing test on a 2D assembly of randomly packed elliptical rods was chosen as the benchmark test. In carrying out the corresponding DEM simulations herein, the contact model was derived and then validated using finite element analysis; the associated parameters were calibrated experimentally. The flexible (membrane) boundary was modeled by a bonded-particle string with experimentally calibrated parameters. An iteration procedure was implemented to replicate the initial packing and also to satisfy the boundary conditions in the experiment. Overall, the DEM simulation is found effective in reproducing the stress–strain–volumetric response, the statistical observation on the fabric anisotropy and the strain localization. Furthermore, the closer the numerical packing is to the experimental one, the closer the response is reproduced, demonstrating the significance of the initial packing reconstruction. Still, there are some minor differences between the experiment and simulation, reflecting the limitations associated with the particle number and the measurement resolution used in the experiment when reproducing the initial packing.</description><identifier>ISSN: 1861-1125</identifier><identifier>EISSN: 1861-1133</identifier><identifier>DOI: 10.1007/s11440-017-0542-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Anisotropy ; Assembly ; Bonding ; Boundary conditions ; Complex Fluids and Microfluidics ; Contact stresses ; Discrete element method ; Engineering ; Experiments ; Finite element method ; Foundations ; Geoengineering ; Geotechnical Engineering & Applied Earth Sciences ; Hydraulics ; Localization ; Packing ; Parameters ; Research Paper ; Rods ; Shearing ; Simulation ; Soft and Granular Matter ; Soil Science & Conservation ; Solid Mechanics ; Strain localization ; Two dimensional analysis</subject><ispartof>Acta geotechnica, 2017-06, Vol.12 (3), p.541-557</ispartof><rights>Springer-Verlag Berlin Heidelberg 2017</rights><rights>Acta Geotechnica is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a339t-c70e3fe6608a0d9d4f59529222410c20cdfe16f21ca46b2997e2ceea75aee6233</citedby><cites>FETCH-LOGICAL-a339t-c70e3fe6608a0d9d4f59529222410c20cdfe16f21ca46b2997e2ceea75aee6233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11440-017-0542-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11440-017-0542-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Li, Zhaofeng</creatorcontrib><creatorcontrib>Wang, Yu-Hsing</creatorcontrib><creatorcontrib>Li, Xia</creatorcontrib><creatorcontrib>Yuan, Quan</creatorcontrib><title>Validation of discrete element method by simulating a 2D assembly of randomly packed elliptical rods</title><title>Acta geotechnica</title><addtitle>Acta Geotech</addtitle><description>This paper aims at establishing the predictive capability of the discrete element method (DEM) by validating the simulated responses of granular systems against experimental observations at both the macroscale and the microscale. A previously published biaxial shearing test on a 2D assembly of randomly packed elliptical rods was chosen as the benchmark test. In carrying out the corresponding DEM simulations herein, the contact model was derived and then validated using finite element analysis; the associated parameters were calibrated experimentally. The flexible (membrane) boundary was modeled by a bonded-particle string with experimentally calibrated parameters. An iteration procedure was implemented to replicate the initial packing and also to satisfy the boundary conditions in the experiment. Overall, the DEM simulation is found effective in reproducing the stress–strain–volumetric response, the statistical observation on the fabric anisotropy and the strain localization. Furthermore, the closer the numerical packing is to the experimental one, the closer the response is reproduced, demonstrating the significance of the initial packing reconstruction. Still, there are some minor differences between the experiment and simulation, reflecting the limitations associated with the particle number and the measurement resolution used in the experiment when reproducing the initial packing.</description><subject>Anisotropy</subject><subject>Assembly</subject><subject>Bonding</subject><subject>Boundary conditions</subject><subject>Complex Fluids and Microfluidics</subject><subject>Contact stresses</subject><subject>Discrete element method</subject><subject>Engineering</subject><subject>Experiments</subject><subject>Finite element method</subject><subject>Foundations</subject><subject>Geoengineering</subject><subject>Geotechnical Engineering & Applied Earth Sciences</subject><subject>Hydraulics</subject><subject>Localization</subject><subject>Packing</subject><subject>Parameters</subject><subject>Research Paper</subject><subject>Rods</subject><subject>Shearing</subject><subject>Simulation</subject><subject>Soft and Granular Matter</subject><subject>Soil Science & Conservation</subject><subject>Solid Mechanics</subject><subject>Strain localization</subject><subject>Two dimensional analysis</subject><issn>1861-1125</issn><issn>1861-1133</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kDtPwzAUhS0EEqXwA9gsMQeuH3HqEZWnVIkFWC3XvikpSRzsdOi_x1UQYmG6Z_i-c6VDyCWDawZQ3STGpIQCWFVAKXkhj8iMLRQrGBPi-Dfz8pScpbQFUIJLNSP-3baNt2MTehpq6pvkIo5IscUO-5F2OH4ET9d7mppu12aw31BL-R21KWG3bvcHLdrehy7nwbpP9Nlum2FsnG1pDD6dk5Patgkvfu6cvD3cvy6fitXL4_PydlVYIfRYuApQ1KgULCx47WVd6pJrzrlk4Dg4XyNTNWfOSrXmWlfIHaKtSououBBzcjX1DjF87TCNZht2sc8vDVtorbgGVWWKTZSLIaWItRli09m4NwzMYUwzjWnymOYwppHZ4ZOTMttvMP5p_lf6Bmphd6Q</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Li, Zhaofeng</creator><creator>Wang, Yu-Hsing</creator><creator>Li, Xia</creator><creator>Yuan, Quan</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20170601</creationdate><title>Validation of discrete element method by simulating a 2D assembly of randomly packed elliptical rods</title><author>Li, Zhaofeng ; Wang, Yu-Hsing ; Li, Xia ; Yuan, Quan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a339t-c70e3fe6608a0d9d4f59529222410c20cdfe16f21ca46b2997e2ceea75aee6233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Anisotropy</topic><topic>Assembly</topic><topic>Bonding</topic><topic>Boundary conditions</topic><topic>Complex Fluids and Microfluidics</topic><topic>Contact stresses</topic><topic>Discrete element method</topic><topic>Engineering</topic><topic>Experiments</topic><topic>Finite element method</topic><topic>Foundations</topic><topic>Geoengineering</topic><topic>Geotechnical Engineering & Applied Earth Sciences</topic><topic>Hydraulics</topic><topic>Localization</topic><topic>Packing</topic><topic>Parameters</topic><topic>Research Paper</topic><topic>Rods</topic><topic>Shearing</topic><topic>Simulation</topic><topic>Soft and Granular Matter</topic><topic>Soil Science & Conservation</topic><topic>Solid Mechanics</topic><topic>Strain localization</topic><topic>Two dimensional analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Zhaofeng</creatorcontrib><creatorcontrib>Wang, Yu-Hsing</creatorcontrib><creatorcontrib>Li, Xia</creatorcontrib><creatorcontrib>Yuan, Quan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Acta geotechnica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Zhaofeng</au><au>Wang, Yu-Hsing</au><au>Li, Xia</au><au>Yuan, Quan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Validation of discrete element method by simulating a 2D assembly of randomly packed elliptical rods</atitle><jtitle>Acta geotechnica</jtitle><stitle>Acta Geotech</stitle><date>2017-06-01</date><risdate>2017</risdate><volume>12</volume><issue>3</issue><spage>541</spage><epage>557</epage><pages>541-557</pages><issn>1861-1125</issn><eissn>1861-1133</eissn><abstract>This paper aims at establishing the predictive capability of the discrete element method (DEM) by validating the simulated responses of granular systems against experimental observations at both the macroscale and the microscale. A previously published biaxial shearing test on a 2D assembly of randomly packed elliptical rods was chosen as the benchmark test. In carrying out the corresponding DEM simulations herein, the contact model was derived and then validated using finite element analysis; the associated parameters were calibrated experimentally. The flexible (membrane) boundary was modeled by a bonded-particle string with experimentally calibrated parameters. An iteration procedure was implemented to replicate the initial packing and also to satisfy the boundary conditions in the experiment. Overall, the DEM simulation is found effective in reproducing the stress–strain–volumetric response, the statistical observation on the fabric anisotropy and the strain localization. Furthermore, the closer the numerical packing is to the experimental one, the closer the response is reproduced, demonstrating the significance of the initial packing reconstruction. Still, there are some minor differences between the experiment and simulation, reflecting the limitations associated with the particle number and the measurement resolution used in the experiment when reproducing the initial packing.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11440-017-0542-4</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1861-1125 |
ispartof | Acta geotechnica, 2017-06, Vol.12 (3), p.541-557 |
issn | 1861-1125 1861-1133 |
language | eng |
recordid | cdi_proquest_journals_1899629067 |
source | SpringerLink Journals |
subjects | Anisotropy Assembly Bonding Boundary conditions Complex Fluids and Microfluidics Contact stresses Discrete element method Engineering Experiments Finite element method Foundations Geoengineering Geotechnical Engineering & Applied Earth Sciences Hydraulics Localization Packing Parameters Research Paper Rods Shearing Simulation Soft and Granular Matter Soil Science & Conservation Solid Mechanics Strain localization Two dimensional analysis |
title | Validation of discrete element method by simulating a 2D assembly of randomly packed elliptical rods |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T13%3A24%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Validation%20of%20discrete%20element%20method%20by%20simulating%20a%202D%20assembly%20of%20randomly%20packed%20elliptical%20rods&rft.jtitle=Acta%20geotechnica&rft.au=Li,%20Zhaofeng&rft.date=2017-06-01&rft.volume=12&rft.issue=3&rft.spage=541&rft.epage=557&rft.pages=541-557&rft.issn=1861-1125&rft.eissn=1861-1133&rft_id=info:doi/10.1007/s11440-017-0542-4&rft_dat=%3Cproquest_cross%3E1899629067%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1899629067&rft_id=info:pmid/&rfr_iscdi=true |