Validation of discrete element method by simulating a 2D assembly of randomly packed elliptical rods

This paper aims at establishing the predictive capability of the discrete element method (DEM) by validating the simulated responses of granular systems against experimental observations at both the macroscale and the microscale. A previously published biaxial shearing test on a 2D assembly of rando...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta geotechnica 2017-06, Vol.12 (3), p.541-557
Hauptverfasser: Li, Zhaofeng, Wang, Yu-Hsing, Li, Xia, Yuan, Quan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 557
container_issue 3
container_start_page 541
container_title Acta geotechnica
container_volume 12
creator Li, Zhaofeng
Wang, Yu-Hsing
Li, Xia
Yuan, Quan
description This paper aims at establishing the predictive capability of the discrete element method (DEM) by validating the simulated responses of granular systems against experimental observations at both the macroscale and the microscale. A previously published biaxial shearing test on a 2D assembly of randomly packed elliptical rods was chosen as the benchmark test. In carrying out the corresponding DEM simulations herein, the contact model was derived and then validated using finite element analysis; the associated parameters were calibrated experimentally. The flexible (membrane) boundary was modeled by a bonded-particle string with experimentally calibrated parameters. An iteration procedure was implemented to replicate the initial packing and also to satisfy the boundary conditions in the experiment. Overall, the DEM simulation is found effective in reproducing the stress–strain–volumetric response, the statistical observation on the fabric anisotropy and the strain localization. Furthermore, the closer the numerical packing is to the experimental one, the closer the response is reproduced, demonstrating the significance of the initial packing reconstruction. Still, there are some minor differences between the experiment and simulation, reflecting the limitations associated with the particle number and the measurement resolution used in the experiment when reproducing the initial packing.
doi_str_mv 10.1007/s11440-017-0542-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1899629067</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1899629067</sourcerecordid><originalsourceid>FETCH-LOGICAL-a339t-c70e3fe6608a0d9d4f59529222410c20cdfe16f21ca46b2997e2ceea75aee6233</originalsourceid><addsrcrecordid>eNp1kDtPwzAUhS0EEqXwA9gsMQeuH3HqEZWnVIkFWC3XvikpSRzsdOi_x1UQYmG6Z_i-c6VDyCWDawZQ3STGpIQCWFVAKXkhj8iMLRQrGBPi-Dfz8pScpbQFUIJLNSP-3baNt2MTehpq6pvkIo5IscUO-5F2OH4ET9d7mppu12aw31BL-R21KWG3bvcHLdrehy7nwbpP9Nlum2FsnG1pDD6dk5Patgkvfu6cvD3cvy6fitXL4_PydlVYIfRYuApQ1KgULCx47WVd6pJrzrlk4Dg4XyNTNWfOSrXmWlfIHaKtSououBBzcjX1DjF87TCNZht2sc8vDVtorbgGVWWKTZSLIaWItRli09m4NwzMYUwzjWnymOYwppHZ4ZOTMttvMP5p_lf6Bmphd6Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899629067</pqid></control><display><type>article</type><title>Validation of discrete element method by simulating a 2D assembly of randomly packed elliptical rods</title><source>SpringerLink Journals</source><creator>Li, Zhaofeng ; Wang, Yu-Hsing ; Li, Xia ; Yuan, Quan</creator><creatorcontrib>Li, Zhaofeng ; Wang, Yu-Hsing ; Li, Xia ; Yuan, Quan</creatorcontrib><description>This paper aims at establishing the predictive capability of the discrete element method (DEM) by validating the simulated responses of granular systems against experimental observations at both the macroscale and the microscale. A previously published biaxial shearing test on a 2D assembly of randomly packed elliptical rods was chosen as the benchmark test. In carrying out the corresponding DEM simulations herein, the contact model was derived and then validated using finite element analysis; the associated parameters were calibrated experimentally. The flexible (membrane) boundary was modeled by a bonded-particle string with experimentally calibrated parameters. An iteration procedure was implemented to replicate the initial packing and also to satisfy the boundary conditions in the experiment. Overall, the DEM simulation is found effective in reproducing the stress–strain–volumetric response, the statistical observation on the fabric anisotropy and the strain localization. Furthermore, the closer the numerical packing is to the experimental one, the closer the response is reproduced, demonstrating the significance of the initial packing reconstruction. Still, there are some minor differences between the experiment and simulation, reflecting the limitations associated with the particle number and the measurement resolution used in the experiment when reproducing the initial packing.</description><identifier>ISSN: 1861-1125</identifier><identifier>EISSN: 1861-1133</identifier><identifier>DOI: 10.1007/s11440-017-0542-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Anisotropy ; Assembly ; Bonding ; Boundary conditions ; Complex Fluids and Microfluidics ; Contact stresses ; Discrete element method ; Engineering ; Experiments ; Finite element method ; Foundations ; Geoengineering ; Geotechnical Engineering &amp; Applied Earth Sciences ; Hydraulics ; Localization ; Packing ; Parameters ; Research Paper ; Rods ; Shearing ; Simulation ; Soft and Granular Matter ; Soil Science &amp; Conservation ; Solid Mechanics ; Strain localization ; Two dimensional analysis</subject><ispartof>Acta geotechnica, 2017-06, Vol.12 (3), p.541-557</ispartof><rights>Springer-Verlag Berlin Heidelberg 2017</rights><rights>Acta Geotechnica is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a339t-c70e3fe6608a0d9d4f59529222410c20cdfe16f21ca46b2997e2ceea75aee6233</citedby><cites>FETCH-LOGICAL-a339t-c70e3fe6608a0d9d4f59529222410c20cdfe16f21ca46b2997e2ceea75aee6233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11440-017-0542-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11440-017-0542-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Li, Zhaofeng</creatorcontrib><creatorcontrib>Wang, Yu-Hsing</creatorcontrib><creatorcontrib>Li, Xia</creatorcontrib><creatorcontrib>Yuan, Quan</creatorcontrib><title>Validation of discrete element method by simulating a 2D assembly of randomly packed elliptical rods</title><title>Acta geotechnica</title><addtitle>Acta Geotech</addtitle><description>This paper aims at establishing the predictive capability of the discrete element method (DEM) by validating the simulated responses of granular systems against experimental observations at both the macroscale and the microscale. A previously published biaxial shearing test on a 2D assembly of randomly packed elliptical rods was chosen as the benchmark test. In carrying out the corresponding DEM simulations herein, the contact model was derived and then validated using finite element analysis; the associated parameters were calibrated experimentally. The flexible (membrane) boundary was modeled by a bonded-particle string with experimentally calibrated parameters. An iteration procedure was implemented to replicate the initial packing and also to satisfy the boundary conditions in the experiment. Overall, the DEM simulation is found effective in reproducing the stress–strain–volumetric response, the statistical observation on the fabric anisotropy and the strain localization. Furthermore, the closer the numerical packing is to the experimental one, the closer the response is reproduced, demonstrating the significance of the initial packing reconstruction. Still, there are some minor differences between the experiment and simulation, reflecting the limitations associated with the particle number and the measurement resolution used in the experiment when reproducing the initial packing.</description><subject>Anisotropy</subject><subject>Assembly</subject><subject>Bonding</subject><subject>Boundary conditions</subject><subject>Complex Fluids and Microfluidics</subject><subject>Contact stresses</subject><subject>Discrete element method</subject><subject>Engineering</subject><subject>Experiments</subject><subject>Finite element method</subject><subject>Foundations</subject><subject>Geoengineering</subject><subject>Geotechnical Engineering &amp; Applied Earth Sciences</subject><subject>Hydraulics</subject><subject>Localization</subject><subject>Packing</subject><subject>Parameters</subject><subject>Research Paper</subject><subject>Rods</subject><subject>Shearing</subject><subject>Simulation</subject><subject>Soft and Granular Matter</subject><subject>Soil Science &amp; Conservation</subject><subject>Solid Mechanics</subject><subject>Strain localization</subject><subject>Two dimensional analysis</subject><issn>1861-1125</issn><issn>1861-1133</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kDtPwzAUhS0EEqXwA9gsMQeuH3HqEZWnVIkFWC3XvikpSRzsdOi_x1UQYmG6Z_i-c6VDyCWDawZQ3STGpIQCWFVAKXkhj8iMLRQrGBPi-Dfz8pScpbQFUIJLNSP-3baNt2MTehpq6pvkIo5IscUO-5F2OH4ET9d7mppu12aw31BL-R21KWG3bvcHLdrehy7nwbpP9Nlum2FsnG1pDD6dk5Patgkvfu6cvD3cvy6fitXL4_PydlVYIfRYuApQ1KgULCx47WVd6pJrzrlk4Dg4XyNTNWfOSrXmWlfIHaKtSououBBzcjX1DjF87TCNZht2sc8vDVtorbgGVWWKTZSLIaWItRli09m4NwzMYUwzjWnymOYwppHZ4ZOTMttvMP5p_lf6Bmphd6Q</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Li, Zhaofeng</creator><creator>Wang, Yu-Hsing</creator><creator>Li, Xia</creator><creator>Yuan, Quan</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20170601</creationdate><title>Validation of discrete element method by simulating a 2D assembly of randomly packed elliptical rods</title><author>Li, Zhaofeng ; Wang, Yu-Hsing ; Li, Xia ; Yuan, Quan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a339t-c70e3fe6608a0d9d4f59529222410c20cdfe16f21ca46b2997e2ceea75aee6233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Anisotropy</topic><topic>Assembly</topic><topic>Bonding</topic><topic>Boundary conditions</topic><topic>Complex Fluids and Microfluidics</topic><topic>Contact stresses</topic><topic>Discrete element method</topic><topic>Engineering</topic><topic>Experiments</topic><topic>Finite element method</topic><topic>Foundations</topic><topic>Geoengineering</topic><topic>Geotechnical Engineering &amp; Applied Earth Sciences</topic><topic>Hydraulics</topic><topic>Localization</topic><topic>Packing</topic><topic>Parameters</topic><topic>Research Paper</topic><topic>Rods</topic><topic>Shearing</topic><topic>Simulation</topic><topic>Soft and Granular Matter</topic><topic>Soil Science &amp; Conservation</topic><topic>Solid Mechanics</topic><topic>Strain localization</topic><topic>Two dimensional analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Zhaofeng</creatorcontrib><creatorcontrib>Wang, Yu-Hsing</creatorcontrib><creatorcontrib>Li, Xia</creatorcontrib><creatorcontrib>Yuan, Quan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Acta geotechnica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Zhaofeng</au><au>Wang, Yu-Hsing</au><au>Li, Xia</au><au>Yuan, Quan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Validation of discrete element method by simulating a 2D assembly of randomly packed elliptical rods</atitle><jtitle>Acta geotechnica</jtitle><stitle>Acta Geotech</stitle><date>2017-06-01</date><risdate>2017</risdate><volume>12</volume><issue>3</issue><spage>541</spage><epage>557</epage><pages>541-557</pages><issn>1861-1125</issn><eissn>1861-1133</eissn><abstract>This paper aims at establishing the predictive capability of the discrete element method (DEM) by validating the simulated responses of granular systems against experimental observations at both the macroscale and the microscale. A previously published biaxial shearing test on a 2D assembly of randomly packed elliptical rods was chosen as the benchmark test. In carrying out the corresponding DEM simulations herein, the contact model was derived and then validated using finite element analysis; the associated parameters were calibrated experimentally. The flexible (membrane) boundary was modeled by a bonded-particle string with experimentally calibrated parameters. An iteration procedure was implemented to replicate the initial packing and also to satisfy the boundary conditions in the experiment. Overall, the DEM simulation is found effective in reproducing the stress–strain–volumetric response, the statistical observation on the fabric anisotropy and the strain localization. Furthermore, the closer the numerical packing is to the experimental one, the closer the response is reproduced, demonstrating the significance of the initial packing reconstruction. Still, there are some minor differences between the experiment and simulation, reflecting the limitations associated with the particle number and the measurement resolution used in the experiment when reproducing the initial packing.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11440-017-0542-4</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1861-1125
ispartof Acta geotechnica, 2017-06, Vol.12 (3), p.541-557
issn 1861-1125
1861-1133
language eng
recordid cdi_proquest_journals_1899629067
source SpringerLink Journals
subjects Anisotropy
Assembly
Bonding
Boundary conditions
Complex Fluids and Microfluidics
Contact stresses
Discrete element method
Engineering
Experiments
Finite element method
Foundations
Geoengineering
Geotechnical Engineering & Applied Earth Sciences
Hydraulics
Localization
Packing
Parameters
Research Paper
Rods
Shearing
Simulation
Soft and Granular Matter
Soil Science & Conservation
Solid Mechanics
Strain localization
Two dimensional analysis
title Validation of discrete element method by simulating a 2D assembly of randomly packed elliptical rods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T13%3A24%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Validation%20of%20discrete%20element%20method%20by%20simulating%20a%202D%20assembly%20of%20randomly%20packed%20elliptical%20rods&rft.jtitle=Acta%20geotechnica&rft.au=Li,%20Zhaofeng&rft.date=2017-06-01&rft.volume=12&rft.issue=3&rft.spage=541&rft.epage=557&rft.pages=541-557&rft.issn=1861-1125&rft.eissn=1861-1133&rft_id=info:doi/10.1007/s11440-017-0542-4&rft_dat=%3Cproquest_cross%3E1899629067%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1899629067&rft_id=info:pmid/&rfr_iscdi=true