Morphology and Gas-Sensing Properties of Tin Oxide Foams with Dual Pore Structure
Tin oxide is a commonly used gas-sensing material, which can be applied as an n - or p -type gas sensor. To improve the gas-sensing performance of tin oxide, we successfully synthesized tin oxide foam via an ice-templating or freeze-casting method. The tin oxide foam samples showed different morphol...
Gespeichert in:
Veröffentlicht in: | Journal of electronic materials 2017-06, Vol.46 (6), p.3748-3756 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3756 |
---|---|
container_issue | 6 |
container_start_page | 3748 |
container_title | Journal of electronic materials |
container_volume | 46 |
creator | Nam, Kyungju Kim, Hyeong-Gwan Choi, Hyelim Park, Hyeji Kang, Jin Soo Sung, Yung-Eun Lee, Hee Chul Choe, Heeman |
description | Tin oxide is a commonly used gas-sensing material, which can be applied as an
n
- or
p
-type gas sensor. To improve the gas-sensing performance of tin oxide, we successfully synthesized tin oxide foam via an ice-templating or freeze-casting method. The tin oxide foam samples showed different morphological features depending on the major processing parameters, which include sintering temperature, sintering time, and the amount of added powder. Based on scanning electron microscopy images, we could identify dual pore structure of tin oxide foam containing ‘wall’ pores ranging from 5.3
μ
m to 10.7
μ
m, as well as smaller secondary pores (a few micrometers in size) on the wall surfaces. Gas-sensing performance tests for the synthesized tin oxide foams reveal a sensitivity of 13.1, a response time of 192 s, and a recovery time of 160 s at an ethanol gas concentration of 60 ppm at 300°C. This is a remarkable result given that it showed
p
-type semiconductor behavior and was used without the addition of any catalyst. |
doi_str_mv | 10.1007/s11664-016-5242-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1899622252</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1899622252</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-cb4a7e2a548ad39ecdbaf0083b9258dd18c350b01f5f293bcd6b36fdae42ec213</originalsourceid><addsrcrecordid>eNp1kLFOwzAQhi0EEqXwAGyWmA0-O3aTERVakIpa1CKxWU5st6naONiJSt-eVGFgYbrh_u8_3YfQLdB7oHT0EAGkTAgFSQRLGJFnaAAi4QRS-XmOBpRL6DZcXKKrGLeUgoAUBuj9zYd643d-fcS6MniqI1naKpbVGi-Cr21oShuxd3hVVnj-XRqLJ17vIz6UzQY_tXqHFz5YvGxCWzRtsNfowuldtDe_c4g-Js-r8QuZzaev48cZKbjgDSnyRI8s0yJJteGZLUyuHaUpzzMmUmMg7XI0p-CEYxnPCyNzLp3RNmG2YMCH6K7vrYP_am1s1Na3oepOKkizTDLGun-HCPpUEXyMwTpVh3Kvw1EBVSdzqjenOnPqZE7JjmE9E7tstbbhT_O_0A-HBnEn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899622252</pqid></control><display><type>article</type><title>Morphology and Gas-Sensing Properties of Tin Oxide Foams with Dual Pore Structure</title><source>SpringerLink Journals</source><creator>Nam, Kyungju ; Kim, Hyeong-Gwan ; Choi, Hyelim ; Park, Hyeji ; Kang, Jin Soo ; Sung, Yung-Eun ; Lee, Hee Chul ; Choe, Heeman</creator><creatorcontrib>Nam, Kyungju ; Kim, Hyeong-Gwan ; Choi, Hyelim ; Park, Hyeji ; Kang, Jin Soo ; Sung, Yung-Eun ; Lee, Hee Chul ; Choe, Heeman</creatorcontrib><description>Tin oxide is a commonly used gas-sensing material, which can be applied as an
n
- or
p
-type gas sensor. To improve the gas-sensing performance of tin oxide, we successfully synthesized tin oxide foam via an ice-templating or freeze-casting method. The tin oxide foam samples showed different morphological features depending on the major processing parameters, which include sintering temperature, sintering time, and the amount of added powder. Based on scanning electron microscopy images, we could identify dual pore structure of tin oxide foam containing ‘wall’ pores ranging from 5.3
μ
m to 10.7
μ
m, as well as smaller secondary pores (a few micrometers in size) on the wall surfaces. Gas-sensing performance tests for the synthesized tin oxide foams reveal a sensitivity of 13.1, a response time of 192 s, and a recovery time of 160 s at an ethanol gas concentration of 60 ppm at 300°C. This is a remarkable result given that it showed
p
-type semiconductor behavior and was used without the addition of any catalyst.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-016-5242-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Electronics and Microelectronics ; Ethanol ; Gas sensors ; Instrumentation ; Materials Science ; Metal foams ; Micrometers ; Morphology ; Optical and Electronic Materials ; P-type semiconductors ; Performance tests ; Process parameters ; Recovery time ; Response time ; Sintering (powder metallurgy) ; Solid State Physics ; Synthesis ; Tin ; Tin oxides</subject><ispartof>Journal of electronic materials, 2017-06, Vol.46 (6), p.3748-3756</ispartof><rights>The Minerals, Metals & Materials Society 2017</rights><rights>Journal of Electronic Materials is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-cb4a7e2a548ad39ecdbaf0083b9258dd18c350b01f5f293bcd6b36fdae42ec213</citedby><cites>FETCH-LOGICAL-c353t-cb4a7e2a548ad39ecdbaf0083b9258dd18c350b01f5f293bcd6b36fdae42ec213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11664-016-5242-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11664-016-5242-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Nam, Kyungju</creatorcontrib><creatorcontrib>Kim, Hyeong-Gwan</creatorcontrib><creatorcontrib>Choi, Hyelim</creatorcontrib><creatorcontrib>Park, Hyeji</creatorcontrib><creatorcontrib>Kang, Jin Soo</creatorcontrib><creatorcontrib>Sung, Yung-Eun</creatorcontrib><creatorcontrib>Lee, Hee Chul</creatorcontrib><creatorcontrib>Choe, Heeman</creatorcontrib><title>Morphology and Gas-Sensing Properties of Tin Oxide Foams with Dual Pore Structure</title><title>Journal of electronic materials</title><addtitle>Journal of Elec Materi</addtitle><description>Tin oxide is a commonly used gas-sensing material, which can be applied as an
n
- or
p
-type gas sensor. To improve the gas-sensing performance of tin oxide, we successfully synthesized tin oxide foam via an ice-templating or freeze-casting method. The tin oxide foam samples showed different morphological features depending on the major processing parameters, which include sintering temperature, sintering time, and the amount of added powder. Based on scanning electron microscopy images, we could identify dual pore structure of tin oxide foam containing ‘wall’ pores ranging from 5.3
μ
m to 10.7
μ
m, as well as smaller secondary pores (a few micrometers in size) on the wall surfaces. Gas-sensing performance tests for the synthesized tin oxide foams reveal a sensitivity of 13.1, a response time of 192 s, and a recovery time of 160 s at an ethanol gas concentration of 60 ppm at 300°C. This is a remarkable result given that it showed
p
-type semiconductor behavior and was used without the addition of any catalyst.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Electronics and Microelectronics</subject><subject>Ethanol</subject><subject>Gas sensors</subject><subject>Instrumentation</subject><subject>Materials Science</subject><subject>Metal foams</subject><subject>Micrometers</subject><subject>Morphology</subject><subject>Optical and Electronic Materials</subject><subject>P-type semiconductors</subject><subject>Performance tests</subject><subject>Process parameters</subject><subject>Recovery time</subject><subject>Response time</subject><subject>Sintering (powder metallurgy)</subject><subject>Solid State Physics</subject><subject>Synthesis</subject><subject>Tin</subject><subject>Tin oxides</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kLFOwzAQhi0EEqXwAGyWmA0-O3aTERVakIpa1CKxWU5st6naONiJSt-eVGFgYbrh_u8_3YfQLdB7oHT0EAGkTAgFSQRLGJFnaAAi4QRS-XmOBpRL6DZcXKKrGLeUgoAUBuj9zYd643d-fcS6MniqI1naKpbVGi-Cr21oShuxd3hVVnj-XRqLJ17vIz6UzQY_tXqHFz5YvGxCWzRtsNfowuldtDe_c4g-Js-r8QuZzaev48cZKbjgDSnyRI8s0yJJteGZLUyuHaUpzzMmUmMg7XI0p-CEYxnPCyNzLp3RNmG2YMCH6K7vrYP_am1s1Na3oepOKkizTDLGun-HCPpUEXyMwTpVh3Kvw1EBVSdzqjenOnPqZE7JjmE9E7tstbbhT_O_0A-HBnEn</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Nam, Kyungju</creator><creator>Kim, Hyeong-Gwan</creator><creator>Choi, Hyelim</creator><creator>Park, Hyeji</creator><creator>Kang, Jin Soo</creator><creator>Sung, Yung-Eun</creator><creator>Lee, Hee Chul</creator><creator>Choe, Heeman</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20170601</creationdate><title>Morphology and Gas-Sensing Properties of Tin Oxide Foams with Dual Pore Structure</title><author>Nam, Kyungju ; Kim, Hyeong-Gwan ; Choi, Hyelim ; Park, Hyeji ; Kang, Jin Soo ; Sung, Yung-Eun ; Lee, Hee Chul ; Choe, Heeman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-cb4a7e2a548ad39ecdbaf0083b9258dd18c350b01f5f293bcd6b36fdae42ec213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Electronics and Microelectronics</topic><topic>Ethanol</topic><topic>Gas sensors</topic><topic>Instrumentation</topic><topic>Materials Science</topic><topic>Metal foams</topic><topic>Micrometers</topic><topic>Morphology</topic><topic>Optical and Electronic Materials</topic><topic>P-type semiconductors</topic><topic>Performance tests</topic><topic>Process parameters</topic><topic>Recovery time</topic><topic>Response time</topic><topic>Sintering (powder metallurgy)</topic><topic>Solid State Physics</topic><topic>Synthesis</topic><topic>Tin</topic><topic>Tin oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nam, Kyungju</creatorcontrib><creatorcontrib>Kim, Hyeong-Gwan</creatorcontrib><creatorcontrib>Choi, Hyelim</creatorcontrib><creatorcontrib>Park, Hyeji</creatorcontrib><creatorcontrib>Kang, Jin Soo</creatorcontrib><creatorcontrib>Sung, Yung-Eun</creatorcontrib><creatorcontrib>Lee, Hee Chul</creatorcontrib><creatorcontrib>Choe, Heeman</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nam, Kyungju</au><au>Kim, Hyeong-Gwan</au><au>Choi, Hyelim</au><au>Park, Hyeji</au><au>Kang, Jin Soo</au><au>Sung, Yung-Eun</au><au>Lee, Hee Chul</au><au>Choe, Heeman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Morphology and Gas-Sensing Properties of Tin Oxide Foams with Dual Pore Structure</atitle><jtitle>Journal of electronic materials</jtitle><stitle>Journal of Elec Materi</stitle><date>2017-06-01</date><risdate>2017</risdate><volume>46</volume><issue>6</issue><spage>3748</spage><epage>3756</epage><pages>3748-3756</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><abstract>Tin oxide is a commonly used gas-sensing material, which can be applied as an
n
- or
p
-type gas sensor. To improve the gas-sensing performance of tin oxide, we successfully synthesized tin oxide foam via an ice-templating or freeze-casting method. The tin oxide foam samples showed different morphological features depending on the major processing parameters, which include sintering temperature, sintering time, and the amount of added powder. Based on scanning electron microscopy images, we could identify dual pore structure of tin oxide foam containing ‘wall’ pores ranging from 5.3
μ
m to 10.7
μ
m, as well as smaller secondary pores (a few micrometers in size) on the wall surfaces. Gas-sensing performance tests for the synthesized tin oxide foams reveal a sensitivity of 13.1, a response time of 192 s, and a recovery time of 160 s at an ethanol gas concentration of 60 ppm at 300°C. This is a remarkable result given that it showed
p
-type semiconductor behavior and was used without the addition of any catalyst.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11664-016-5242-6</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0361-5235 |
ispartof | Journal of electronic materials, 2017-06, Vol.46 (6), p.3748-3756 |
issn | 0361-5235 1543-186X |
language | eng |
recordid | cdi_proquest_journals_1899622252 |
source | SpringerLink Journals |
subjects | Characterization and Evaluation of Materials Chemistry and Materials Science Electronics and Microelectronics Ethanol Gas sensors Instrumentation Materials Science Metal foams Micrometers Morphology Optical and Electronic Materials P-type semiconductors Performance tests Process parameters Recovery time Response time Sintering (powder metallurgy) Solid State Physics Synthesis Tin Tin oxides |
title | Morphology and Gas-Sensing Properties of Tin Oxide Foams with Dual Pore Structure |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T04%3A27%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Morphology%20and%20Gas-Sensing%20Properties%20of%20Tin%20Oxide%20Foams%20with%20Dual%20Pore%20Structure&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Nam,%20Kyungju&rft.date=2017-06-01&rft.volume=46&rft.issue=6&rft.spage=3748&rft.epage=3756&rft.pages=3748-3756&rft.issn=0361-5235&rft.eissn=1543-186X&rft_id=info:doi/10.1007/s11664-016-5242-6&rft_dat=%3Cproquest_cross%3E1899622252%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1899622252&rft_id=info:pmid/&rfr_iscdi=true |