Morphology and Gas-Sensing Properties of Tin Oxide Foams with Dual Pore Structure

Tin oxide is a commonly used gas-sensing material, which can be applied as an n - or p -type gas sensor. To improve the gas-sensing performance of tin oxide, we successfully synthesized tin oxide foam via an ice-templating or freeze-casting method. The tin oxide foam samples showed different morphol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of electronic materials 2017-06, Vol.46 (6), p.3748-3756
Hauptverfasser: Nam, Kyungju, Kim, Hyeong-Gwan, Choi, Hyelim, Park, Hyeji, Kang, Jin Soo, Sung, Yung-Eun, Lee, Hee Chul, Choe, Heeman
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3756
container_issue 6
container_start_page 3748
container_title Journal of electronic materials
container_volume 46
creator Nam, Kyungju
Kim, Hyeong-Gwan
Choi, Hyelim
Park, Hyeji
Kang, Jin Soo
Sung, Yung-Eun
Lee, Hee Chul
Choe, Heeman
description Tin oxide is a commonly used gas-sensing material, which can be applied as an n - or p -type gas sensor. To improve the gas-sensing performance of tin oxide, we successfully synthesized tin oxide foam via an ice-templating or freeze-casting method. The tin oxide foam samples showed different morphological features depending on the major processing parameters, which include sintering temperature, sintering time, and the amount of added powder. Based on scanning electron microscopy images, we could identify dual pore structure of tin oxide foam containing ‘wall’ pores ranging from 5.3  μ m to 10.7  μ m, as well as smaller secondary pores (a few micrometers in size) on the wall surfaces. Gas-sensing performance tests for the synthesized tin oxide foams reveal a sensitivity of 13.1, a response time of 192 s, and a recovery time of 160 s at an ethanol gas concentration of 60 ppm at 300°C. This is a remarkable result given that it showed p -type semiconductor behavior and was used without the addition of any catalyst.
doi_str_mv 10.1007/s11664-016-5242-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1899622252</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1899622252</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-cb4a7e2a548ad39ecdbaf0083b9258dd18c350b01f5f293bcd6b36fdae42ec213</originalsourceid><addsrcrecordid>eNp1kLFOwzAQhi0EEqXwAGyWmA0-O3aTERVakIpa1CKxWU5st6naONiJSt-eVGFgYbrh_u8_3YfQLdB7oHT0EAGkTAgFSQRLGJFnaAAi4QRS-XmOBpRL6DZcXKKrGLeUgoAUBuj9zYd643d-fcS6MniqI1naKpbVGi-Cr21oShuxd3hVVnj-XRqLJ17vIz6UzQY_tXqHFz5YvGxCWzRtsNfowuldtDe_c4g-Js-r8QuZzaev48cZKbjgDSnyRI8s0yJJteGZLUyuHaUpzzMmUmMg7XI0p-CEYxnPCyNzLp3RNmG2YMCH6K7vrYP_am1s1Na3oepOKkizTDLGun-HCPpUEXyMwTpVh3Kvw1EBVSdzqjenOnPqZE7JjmE9E7tstbbhT_O_0A-HBnEn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899622252</pqid></control><display><type>article</type><title>Morphology and Gas-Sensing Properties of Tin Oxide Foams with Dual Pore Structure</title><source>SpringerLink Journals</source><creator>Nam, Kyungju ; Kim, Hyeong-Gwan ; Choi, Hyelim ; Park, Hyeji ; Kang, Jin Soo ; Sung, Yung-Eun ; Lee, Hee Chul ; Choe, Heeman</creator><creatorcontrib>Nam, Kyungju ; Kim, Hyeong-Gwan ; Choi, Hyelim ; Park, Hyeji ; Kang, Jin Soo ; Sung, Yung-Eun ; Lee, Hee Chul ; Choe, Heeman</creatorcontrib><description>Tin oxide is a commonly used gas-sensing material, which can be applied as an n - or p -type gas sensor. To improve the gas-sensing performance of tin oxide, we successfully synthesized tin oxide foam via an ice-templating or freeze-casting method. The tin oxide foam samples showed different morphological features depending on the major processing parameters, which include sintering temperature, sintering time, and the amount of added powder. Based on scanning electron microscopy images, we could identify dual pore structure of tin oxide foam containing ‘wall’ pores ranging from 5.3  μ m to 10.7  μ m, as well as smaller secondary pores (a few micrometers in size) on the wall surfaces. Gas-sensing performance tests for the synthesized tin oxide foams reveal a sensitivity of 13.1, a response time of 192 s, and a recovery time of 160 s at an ethanol gas concentration of 60 ppm at 300°C. This is a remarkable result given that it showed p -type semiconductor behavior and was used without the addition of any catalyst.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-016-5242-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Electronics and Microelectronics ; Ethanol ; Gas sensors ; Instrumentation ; Materials Science ; Metal foams ; Micrometers ; Morphology ; Optical and Electronic Materials ; P-type semiconductors ; Performance tests ; Process parameters ; Recovery time ; Response time ; Sintering (powder metallurgy) ; Solid State Physics ; Synthesis ; Tin ; Tin oxides</subject><ispartof>Journal of electronic materials, 2017-06, Vol.46 (6), p.3748-3756</ispartof><rights>The Minerals, Metals &amp; Materials Society 2017</rights><rights>Journal of Electronic Materials is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-cb4a7e2a548ad39ecdbaf0083b9258dd18c350b01f5f293bcd6b36fdae42ec213</citedby><cites>FETCH-LOGICAL-c353t-cb4a7e2a548ad39ecdbaf0083b9258dd18c350b01f5f293bcd6b36fdae42ec213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11664-016-5242-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11664-016-5242-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Nam, Kyungju</creatorcontrib><creatorcontrib>Kim, Hyeong-Gwan</creatorcontrib><creatorcontrib>Choi, Hyelim</creatorcontrib><creatorcontrib>Park, Hyeji</creatorcontrib><creatorcontrib>Kang, Jin Soo</creatorcontrib><creatorcontrib>Sung, Yung-Eun</creatorcontrib><creatorcontrib>Lee, Hee Chul</creatorcontrib><creatorcontrib>Choe, Heeman</creatorcontrib><title>Morphology and Gas-Sensing Properties of Tin Oxide Foams with Dual Pore Structure</title><title>Journal of electronic materials</title><addtitle>Journal of Elec Materi</addtitle><description>Tin oxide is a commonly used gas-sensing material, which can be applied as an n - or p -type gas sensor. To improve the gas-sensing performance of tin oxide, we successfully synthesized tin oxide foam via an ice-templating or freeze-casting method. The tin oxide foam samples showed different morphological features depending on the major processing parameters, which include sintering temperature, sintering time, and the amount of added powder. Based on scanning electron microscopy images, we could identify dual pore structure of tin oxide foam containing ‘wall’ pores ranging from 5.3  μ m to 10.7  μ m, as well as smaller secondary pores (a few micrometers in size) on the wall surfaces. Gas-sensing performance tests for the synthesized tin oxide foams reveal a sensitivity of 13.1, a response time of 192 s, and a recovery time of 160 s at an ethanol gas concentration of 60 ppm at 300°C. This is a remarkable result given that it showed p -type semiconductor behavior and was used without the addition of any catalyst.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Electronics and Microelectronics</subject><subject>Ethanol</subject><subject>Gas sensors</subject><subject>Instrumentation</subject><subject>Materials Science</subject><subject>Metal foams</subject><subject>Micrometers</subject><subject>Morphology</subject><subject>Optical and Electronic Materials</subject><subject>P-type semiconductors</subject><subject>Performance tests</subject><subject>Process parameters</subject><subject>Recovery time</subject><subject>Response time</subject><subject>Sintering (powder metallurgy)</subject><subject>Solid State Physics</subject><subject>Synthesis</subject><subject>Tin</subject><subject>Tin oxides</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kLFOwzAQhi0EEqXwAGyWmA0-O3aTERVakIpa1CKxWU5st6naONiJSt-eVGFgYbrh_u8_3YfQLdB7oHT0EAGkTAgFSQRLGJFnaAAi4QRS-XmOBpRL6DZcXKKrGLeUgoAUBuj9zYd643d-fcS6MniqI1naKpbVGi-Cr21oShuxd3hVVnj-XRqLJ17vIz6UzQY_tXqHFz5YvGxCWzRtsNfowuldtDe_c4g-Js-r8QuZzaev48cZKbjgDSnyRI8s0yJJteGZLUyuHaUpzzMmUmMg7XI0p-CEYxnPCyNzLp3RNmG2YMCH6K7vrYP_am1s1Na3oepOKkizTDLGun-HCPpUEXyMwTpVh3Kvw1EBVSdzqjenOnPqZE7JjmE9E7tstbbhT_O_0A-HBnEn</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Nam, Kyungju</creator><creator>Kim, Hyeong-Gwan</creator><creator>Choi, Hyelim</creator><creator>Park, Hyeji</creator><creator>Kang, Jin Soo</creator><creator>Sung, Yung-Eun</creator><creator>Lee, Hee Chul</creator><creator>Choe, Heeman</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20170601</creationdate><title>Morphology and Gas-Sensing Properties of Tin Oxide Foams with Dual Pore Structure</title><author>Nam, Kyungju ; Kim, Hyeong-Gwan ; Choi, Hyelim ; Park, Hyeji ; Kang, Jin Soo ; Sung, Yung-Eun ; Lee, Hee Chul ; Choe, Heeman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-cb4a7e2a548ad39ecdbaf0083b9258dd18c350b01f5f293bcd6b36fdae42ec213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Electronics and Microelectronics</topic><topic>Ethanol</topic><topic>Gas sensors</topic><topic>Instrumentation</topic><topic>Materials Science</topic><topic>Metal foams</topic><topic>Micrometers</topic><topic>Morphology</topic><topic>Optical and Electronic Materials</topic><topic>P-type semiconductors</topic><topic>Performance tests</topic><topic>Process parameters</topic><topic>Recovery time</topic><topic>Response time</topic><topic>Sintering (powder metallurgy)</topic><topic>Solid State Physics</topic><topic>Synthesis</topic><topic>Tin</topic><topic>Tin oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nam, Kyungju</creatorcontrib><creatorcontrib>Kim, Hyeong-Gwan</creatorcontrib><creatorcontrib>Choi, Hyelim</creatorcontrib><creatorcontrib>Park, Hyeji</creatorcontrib><creatorcontrib>Kang, Jin Soo</creatorcontrib><creatorcontrib>Sung, Yung-Eun</creatorcontrib><creatorcontrib>Lee, Hee Chul</creatorcontrib><creatorcontrib>Choe, Heeman</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nam, Kyungju</au><au>Kim, Hyeong-Gwan</au><au>Choi, Hyelim</au><au>Park, Hyeji</au><au>Kang, Jin Soo</au><au>Sung, Yung-Eun</au><au>Lee, Hee Chul</au><au>Choe, Heeman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Morphology and Gas-Sensing Properties of Tin Oxide Foams with Dual Pore Structure</atitle><jtitle>Journal of electronic materials</jtitle><stitle>Journal of Elec Materi</stitle><date>2017-06-01</date><risdate>2017</risdate><volume>46</volume><issue>6</issue><spage>3748</spage><epage>3756</epage><pages>3748-3756</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><abstract>Tin oxide is a commonly used gas-sensing material, which can be applied as an n - or p -type gas sensor. To improve the gas-sensing performance of tin oxide, we successfully synthesized tin oxide foam via an ice-templating or freeze-casting method. The tin oxide foam samples showed different morphological features depending on the major processing parameters, which include sintering temperature, sintering time, and the amount of added powder. Based on scanning electron microscopy images, we could identify dual pore structure of tin oxide foam containing ‘wall’ pores ranging from 5.3  μ m to 10.7  μ m, as well as smaller secondary pores (a few micrometers in size) on the wall surfaces. Gas-sensing performance tests for the synthesized tin oxide foams reveal a sensitivity of 13.1, a response time of 192 s, and a recovery time of 160 s at an ethanol gas concentration of 60 ppm at 300°C. This is a remarkable result given that it showed p -type semiconductor behavior and was used without the addition of any catalyst.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11664-016-5242-6</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0361-5235
ispartof Journal of electronic materials, 2017-06, Vol.46 (6), p.3748-3756
issn 0361-5235
1543-186X
language eng
recordid cdi_proquest_journals_1899622252
source SpringerLink Journals
subjects Characterization and Evaluation of Materials
Chemistry and Materials Science
Electronics and Microelectronics
Ethanol
Gas sensors
Instrumentation
Materials Science
Metal foams
Micrometers
Morphology
Optical and Electronic Materials
P-type semiconductors
Performance tests
Process parameters
Recovery time
Response time
Sintering (powder metallurgy)
Solid State Physics
Synthesis
Tin
Tin oxides
title Morphology and Gas-Sensing Properties of Tin Oxide Foams with Dual Pore Structure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T04%3A27%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Morphology%20and%20Gas-Sensing%20Properties%20of%20Tin%20Oxide%20Foams%20with%20Dual%20Pore%20Structure&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Nam,%20Kyungju&rft.date=2017-06-01&rft.volume=46&rft.issue=6&rft.spage=3748&rft.epage=3756&rft.pages=3748-3756&rft.issn=0361-5235&rft.eissn=1543-186X&rft_id=info:doi/10.1007/s11664-016-5242-6&rft_dat=%3Cproquest_cross%3E1899622252%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1899622252&rft_id=info:pmid/&rfr_iscdi=true