Four-joint motion data based posture classification for immersive postural correction system

In the modern age, it is important for people to maintain a good sitting posture because they spend long hours sitting. Posture correction treatment requires a great deal of time and expenses with continuous observation by a specialist. Therefore, there is a need for a system with which users can ju...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multimedia tools and applications 2017-05, Vol.76 (9), p.11235-11249
Hauptverfasser: Ko, Kyeong-Ri, Chae, Seung-Hoon, Moon, Daesung, Seo, Chang Ho, Pan, Sung Bum
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11249
container_issue 9
container_start_page 11235
container_title Multimedia tools and applications
container_volume 76
creator Ko, Kyeong-Ri
Chae, Seung-Hoon
Moon, Daesung
Seo, Chang Ho
Pan, Sung Bum
description In the modern age, it is important for people to maintain a good sitting posture because they spend long hours sitting. Posture correction treatment requires a great deal of time and expenses with continuous observation by a specialist. Therefore, there is a need for a system with which users can judge and correct their postures on their own. In this paper, we propose a four joint-based motion capture system for building immersive postural correction system. The system collects the subject’s postures, and features are extracted from the collected data to build a database. The data in the DB are classified into normal and abnormal postures after posture learning using the K-means clustering algorithm. An experiment was performed to classify the posture from the joints’ rotation angles and positions; the normal posture judgment reached a success rate of 99.79 %. This result suggests that the features of the four joints can be used to judge and help correct a user’s posture through application to a spinal disease prevention system in the future.
doi_str_mv 10.1007/s11042-016-3299-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1899616312</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1899616312</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-398d92f66e087eb90400b52fa79d53f5e9de68d7d63cf0d0df847a9cfd64b42d3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wNuC5-gk2U02RylWhYIXvQkhmw_Z0t3UJBX67027PXjxNHN43neYB6FbAvcEQDwkQqCmGAjHjEqJ4QzNSCMYFoKS87KzFrBogFyiq5TWUMCG1jP0uQy7iNehH3M1hNyHsbI666rTydlqG1LeRVeZjU6p973RR8KHWPXD4GLqf9wJ0pvKhBidORJpn7IbrtGF15vkbk5zjj6WT--LF7x6e35dPK6wYYRnzGRrJfWcO2iF6yTUAF1DvRbSNsw3TlrHWyssZ8aDBevbWmhpvOV1V1PL5uhu6t3G8L1zKat1-WosJxVppeSEM0ILRSbKxJBSdF5tYz_ouFcE1EGimiSq4kYdJCooGTplUmHHLxf_NP8b-gXYXHZ6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899616312</pqid></control><display><type>article</type><title>Four-joint motion data based posture classification for immersive postural correction system</title><source>SpringerLink Journals</source><creator>Ko, Kyeong-Ri ; Chae, Seung-Hoon ; Moon, Daesung ; Seo, Chang Ho ; Pan, Sung Bum</creator><creatorcontrib>Ko, Kyeong-Ri ; Chae, Seung-Hoon ; Moon, Daesung ; Seo, Chang Ho ; Pan, Sung Bum</creatorcontrib><description>In the modern age, it is important for people to maintain a good sitting posture because they spend long hours sitting. Posture correction treatment requires a great deal of time and expenses with continuous observation by a specialist. Therefore, there is a need for a system with which users can judge and correct their postures on their own. In this paper, we propose a four joint-based motion capture system for building immersive postural correction system. The system collects the subject’s postures, and features are extracted from the collected data to build a database. The data in the DB are classified into normal and abnormal postures after posture learning using the K-means clustering algorithm. An experiment was performed to classify the posture from the joints’ rotation angles and positions; the normal posture judgment reached a success rate of 99.79 %. This result suggests that the features of the four joints can be used to judge and help correct a user’s posture through application to a spinal disease prevention system in the future.</description><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-016-3299-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Cluster analysis ; Clustering ; Computer Communication Networks ; Computer Science ; Data collection ; Data Structures and Information Theory ; Feature extraction ; Human body ; Machine learning ; Motion capture ; Multimedia Information Systems ; Posture ; Special Purpose and Application-Based Systems ; Vector quantization</subject><ispartof>Multimedia tools and applications, 2017-05, Vol.76 (9), p.11235-11249</ispartof><rights>Springer Science+Business Media New York 2016</rights><rights>Multimedia Tools and Applications is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-398d92f66e087eb90400b52fa79d53f5e9de68d7d63cf0d0df847a9cfd64b42d3</citedby><cites>FETCH-LOGICAL-c316t-398d92f66e087eb90400b52fa79d53f5e9de68d7d63cf0d0df847a9cfd64b42d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11042-016-3299-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11042-016-3299-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Ko, Kyeong-Ri</creatorcontrib><creatorcontrib>Chae, Seung-Hoon</creatorcontrib><creatorcontrib>Moon, Daesung</creatorcontrib><creatorcontrib>Seo, Chang Ho</creatorcontrib><creatorcontrib>Pan, Sung Bum</creatorcontrib><title>Four-joint motion data based posture classification for immersive postural correction system</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>In the modern age, it is important for people to maintain a good sitting posture because they spend long hours sitting. Posture correction treatment requires a great deal of time and expenses with continuous observation by a specialist. Therefore, there is a need for a system with which users can judge and correct their postures on their own. In this paper, we propose a four joint-based motion capture system for building immersive postural correction system. The system collects the subject’s postures, and features are extracted from the collected data to build a database. The data in the DB are classified into normal and abnormal postures after posture learning using the K-means clustering algorithm. An experiment was performed to classify the posture from the joints’ rotation angles and positions; the normal posture judgment reached a success rate of 99.79 %. This result suggests that the features of the four joints can be used to judge and help correct a user’s posture through application to a spinal disease prevention system in the future.</description><subject>Algorithms</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Data collection</subject><subject>Data Structures and Information Theory</subject><subject>Feature extraction</subject><subject>Human body</subject><subject>Machine learning</subject><subject>Motion capture</subject><subject>Multimedia Information Systems</subject><subject>Posture</subject><subject>Special Purpose and Application-Based Systems</subject><subject>Vector quantization</subject><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kE1LAzEQhoMoWKs_wNuC5-gk2U02RylWhYIXvQkhmw_Z0t3UJBX67027PXjxNHN43neYB6FbAvcEQDwkQqCmGAjHjEqJ4QzNSCMYFoKS87KzFrBogFyiq5TWUMCG1jP0uQy7iNehH3M1hNyHsbI666rTydlqG1LeRVeZjU6p973RR8KHWPXD4GLqf9wJ0pvKhBidORJpn7IbrtGF15vkbk5zjj6WT--LF7x6e35dPK6wYYRnzGRrJfWcO2iF6yTUAF1DvRbSNsw3TlrHWyssZ8aDBevbWmhpvOV1V1PL5uhu6t3G8L1zKat1-WosJxVppeSEM0ILRSbKxJBSdF5tYz_ouFcE1EGimiSq4kYdJCooGTplUmHHLxf_NP8b-gXYXHZ6</recordid><startdate>20170501</startdate><enddate>20170501</enddate><creator>Ko, Kyeong-Ri</creator><creator>Chae, Seung-Hoon</creator><creator>Moon, Daesung</creator><creator>Seo, Chang Ho</creator><creator>Pan, Sung Bum</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20170501</creationdate><title>Four-joint motion data based posture classification for immersive postural correction system</title><author>Ko, Kyeong-Ri ; Chae, Seung-Hoon ; Moon, Daesung ; Seo, Chang Ho ; Pan, Sung Bum</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-398d92f66e087eb90400b52fa79d53f5e9de68d7d63cf0d0df847a9cfd64b42d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Data collection</topic><topic>Data Structures and Information Theory</topic><topic>Feature extraction</topic><topic>Human body</topic><topic>Machine learning</topic><topic>Motion capture</topic><topic>Multimedia Information Systems</topic><topic>Posture</topic><topic>Special Purpose and Application-Based Systems</topic><topic>Vector quantization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ko, Kyeong-Ri</creatorcontrib><creatorcontrib>Chae, Seung-Hoon</creatorcontrib><creatorcontrib>Moon, Daesung</creatorcontrib><creatorcontrib>Seo, Chang Ho</creatorcontrib><creatorcontrib>Pan, Sung Bum</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ko, Kyeong-Ri</au><au>Chae, Seung-Hoon</au><au>Moon, Daesung</au><au>Seo, Chang Ho</au><au>Pan, Sung Bum</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Four-joint motion data based posture classification for immersive postural correction system</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2017-05-01</date><risdate>2017</risdate><volume>76</volume><issue>9</issue><spage>11235</spage><epage>11249</epage><pages>11235-11249</pages><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>In the modern age, it is important for people to maintain a good sitting posture because they spend long hours sitting. Posture correction treatment requires a great deal of time and expenses with continuous observation by a specialist. Therefore, there is a need for a system with which users can judge and correct their postures on their own. In this paper, we propose a four joint-based motion capture system for building immersive postural correction system. The system collects the subject’s postures, and features are extracted from the collected data to build a database. The data in the DB are classified into normal and abnormal postures after posture learning using the K-means clustering algorithm. An experiment was performed to classify the posture from the joints’ rotation angles and positions; the normal posture judgment reached a success rate of 99.79 %. This result suggests that the features of the four joints can be used to judge and help correct a user’s posture through application to a spinal disease prevention system in the future.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-016-3299-0</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1380-7501
ispartof Multimedia tools and applications, 2017-05, Vol.76 (9), p.11235-11249
issn 1380-7501
1573-7721
language eng
recordid cdi_proquest_journals_1899616312
source SpringerLink Journals
subjects Algorithms
Cluster analysis
Clustering
Computer Communication Networks
Computer Science
Data collection
Data Structures and Information Theory
Feature extraction
Human body
Machine learning
Motion capture
Multimedia Information Systems
Posture
Special Purpose and Application-Based Systems
Vector quantization
title Four-joint motion data based posture classification for immersive postural correction system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T22%3A56%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Four-joint%20motion%20data%20based%20posture%20classification%20for%20immersive%20postural%20correction%20system&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Ko,%20Kyeong-Ri&rft.date=2017-05-01&rft.volume=76&rft.issue=9&rft.spage=11235&rft.epage=11249&rft.pages=11235-11249&rft.issn=1380-7501&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-016-3299-0&rft_dat=%3Cproquest_cross%3E1899616312%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1899616312&rft_id=info:pmid/&rfr_iscdi=true