Radial junction solar cells prepared on single crystalline silicon wafers by metal‐assisted etching (Phys. Status Solidi RRL 5/2017)
Radial junction solar cell has been proposed as an alternative device geometry to conventional planar solar cells with its remarkable electrical and optical performance. In this geometry, micro/nano pillars on the surface allow minority carrier collection in the radial direction and shorten the carr...
Gespeichert in:
Veröffentlicht in: | Physica status solidi. PSS-RRL. Rapid research letters 2017-05, Vol.11 (5), p.n/a |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 5 |
container_start_page | |
container_title | Physica status solidi. PSS-RRL. Rapid research letters |
container_volume | 11 |
creator | Baytemir, Gulsen Es, Firat Alagoz, Arif Sinan Turan, Rasit |
description | Radial junction solar cell has been proposed as an alternative device geometry to conventional planar solar cells with its remarkable electrical and optical performance. In this geometry, micro/nano pillars on the surface allow minority carrier collection in the radial direction and shorten the carrier diffusion length. Moreover, increased light trapping in the pillars and reduced reflection from surface enhance the solar cell efficiency. In their letter (article no. 1600444) Baytemir et al. have investigated radial junction solar cells which have different micropillar length to observe the effect of micropillar length on optical and electrical performance of the solar cells. Photolithography and metal assisted etching (MAE) techniques have been used to form well‐ordered silicon micropillar arrays, and different length of micropillars has been obtained by changing metal assisted etching time. It is observed that etching time and micropillar length are directly proportional. Moreover, both reflection and Jsc results show that optical absorption increases with increasing micropillar length. However, surface area and deteriorations on the surface increase with etching time. Therefore, there is still room to improve the solar cell efficiency with a proper passivation scheme. |
doi_str_mv | 10.1002/pssr.201770326 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1899318655</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1899318655</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1576-4920c298ddc927653aa019ece3360c752159c1d795d085b9863c33a1e300f0903</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhiMEEqWwMltigSHp2a6TeEQVX1IlqgTmyHUc6spNgp2qysbEzG_kl-CoqIxMPt29j-_0BMElhggDkEnrnI0I4CQBSuKjYITTmIQxSeD4ULPpaXDm3BqA8WRKR8FnJkotDFpva9nppkauMcIiqYxxqLWqFVaVaOjr-s0oJG3vOmGMrpVvGS39aCcqZR1a9mij_Oz740s4p13nQdXJlQfR9WLVuwjlnei2DuWN0aVGWTZHbDJcfHMenFTCOHXx-46D1_u7l9ljOH9-eJrdzkOJWRKHU05AEp6WpeQkiRkVAjBXUlEag0wYwYxLXCaclZCyJU9jKikVWFGACjjQcXC1_7e1zftWua5YN1tb-5UFTjmnXhNjPhXtU9I2XqqqitbqjbB9gaEYXBeD6-Lg2gN8D-y0Uf0_6WKR59kf-wOHVoPm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899318655</pqid></control><display><type>article</type><title>Radial junction solar cells prepared on single crystalline silicon wafers by metal‐assisted etching (Phys. Status Solidi RRL 5/2017)</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Baytemir, Gulsen ; Es, Firat ; Alagoz, Arif Sinan ; Turan, Rasit</creator><creatorcontrib>Baytemir, Gulsen ; Es, Firat ; Alagoz, Arif Sinan ; Turan, Rasit</creatorcontrib><description>Radial junction solar cell has been proposed as an alternative device geometry to conventional planar solar cells with its remarkable electrical and optical performance. In this geometry, micro/nano pillars on the surface allow minority carrier collection in the radial direction and shorten the carrier diffusion length. Moreover, increased light trapping in the pillars and reduced reflection from surface enhance the solar cell efficiency. In their letter (article no. 1600444) Baytemir et al. have investigated radial junction solar cells which have different micropillar length to observe the effect of micropillar length on optical and electrical performance of the solar cells. Photolithography and metal assisted etching (MAE) techniques have been used to form well‐ordered silicon micropillar arrays, and different length of micropillars has been obtained by changing metal assisted etching time. It is observed that etching time and micropillar length are directly proportional. Moreover, both reflection and Jsc results show that optical absorption increases with increasing micropillar length. However, surface area and deteriorations on the surface increase with etching time. Therefore, there is still room to improve the solar cell efficiency with a proper passivation scheme.</description><identifier>ISSN: 1862-6254</identifier><identifier>EISSN: 1862-6270</identifier><identifier>DOI: 10.1002/pssr.201770326</identifier><language>eng</language><publisher>Berlin: WILEY‐VCH Verlag Berlin GmbH</publisher><subject>Diffusion length ; Etching ; Minority carriers ; Photolithography ; Photovoltaic cells ; Reflection ; Silicon ; Silicon wafers ; Solar cells</subject><ispartof>Physica status solidi. PSS-RRL. Rapid research letters, 2017-05, Vol.11 (5), p.n/a</ispartof><rights>2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2017 WILEY-VCH Verlag GmbH &Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpssr.201770326$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpssr.201770326$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Baytemir, Gulsen</creatorcontrib><creatorcontrib>Es, Firat</creatorcontrib><creatorcontrib>Alagoz, Arif Sinan</creatorcontrib><creatorcontrib>Turan, Rasit</creatorcontrib><title>Radial junction solar cells prepared on single crystalline silicon wafers by metal‐assisted etching (Phys. Status Solidi RRL 5/2017)</title><title>Physica status solidi. PSS-RRL. Rapid research letters</title><description>Radial junction solar cell has been proposed as an alternative device geometry to conventional planar solar cells with its remarkable electrical and optical performance. In this geometry, micro/nano pillars on the surface allow minority carrier collection in the radial direction and shorten the carrier diffusion length. Moreover, increased light trapping in the pillars and reduced reflection from surface enhance the solar cell efficiency. In their letter (article no. 1600444) Baytemir et al. have investigated radial junction solar cells which have different micropillar length to observe the effect of micropillar length on optical and electrical performance of the solar cells. Photolithography and metal assisted etching (MAE) techniques have been used to form well‐ordered silicon micropillar arrays, and different length of micropillars has been obtained by changing metal assisted etching time. It is observed that etching time and micropillar length are directly proportional. Moreover, both reflection and Jsc results show that optical absorption increases with increasing micropillar length. However, surface area and deteriorations on the surface increase with etching time. Therefore, there is still room to improve the solar cell efficiency with a proper passivation scheme.</description><subject>Diffusion length</subject><subject>Etching</subject><subject>Minority carriers</subject><subject>Photolithography</subject><subject>Photovoltaic cells</subject><subject>Reflection</subject><subject>Silicon</subject><subject>Silicon wafers</subject><subject>Solar cells</subject><issn>1862-6254</issn><issn>1862-6270</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAQhiMEEqWwMltigSHp2a6TeEQVX1IlqgTmyHUc6spNgp2qysbEzG_kl-CoqIxMPt29j-_0BMElhggDkEnrnI0I4CQBSuKjYITTmIQxSeD4ULPpaXDm3BqA8WRKR8FnJkotDFpva9nppkauMcIiqYxxqLWqFVaVaOjr-s0oJG3vOmGMrpVvGS39aCcqZR1a9mij_Oz740s4p13nQdXJlQfR9WLVuwjlnei2DuWN0aVGWTZHbDJcfHMenFTCOHXx-46D1_u7l9ljOH9-eJrdzkOJWRKHU05AEp6WpeQkiRkVAjBXUlEag0wYwYxLXCaclZCyJU9jKikVWFGACjjQcXC1_7e1zftWua5YN1tb-5UFTjmnXhNjPhXtU9I2XqqqitbqjbB9gaEYXBeD6-Lg2gN8D-y0Uf0_6WKR59kf-wOHVoPm</recordid><startdate>201705</startdate><enddate>201705</enddate><creator>Baytemir, Gulsen</creator><creator>Es, Firat</creator><creator>Alagoz, Arif Sinan</creator><creator>Turan, Rasit</creator><general>WILEY‐VCH Verlag Berlin GmbH</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>201705</creationdate><title>Radial junction solar cells prepared on single crystalline silicon wafers by metal‐assisted etching (Phys. Status Solidi RRL 5/2017)</title><author>Baytemir, Gulsen ; Es, Firat ; Alagoz, Arif Sinan ; Turan, Rasit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1576-4920c298ddc927653aa019ece3360c752159c1d795d085b9863c33a1e300f0903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Diffusion length</topic><topic>Etching</topic><topic>Minority carriers</topic><topic>Photolithography</topic><topic>Photovoltaic cells</topic><topic>Reflection</topic><topic>Silicon</topic><topic>Silicon wafers</topic><topic>Solar cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baytemir, Gulsen</creatorcontrib><creatorcontrib>Es, Firat</creatorcontrib><creatorcontrib>Alagoz, Arif Sinan</creatorcontrib><creatorcontrib>Turan, Rasit</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica status solidi. PSS-RRL. Rapid research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baytemir, Gulsen</au><au>Es, Firat</au><au>Alagoz, Arif Sinan</au><au>Turan, Rasit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Radial junction solar cells prepared on single crystalline silicon wafers by metal‐assisted etching (Phys. Status Solidi RRL 5/2017)</atitle><jtitle>Physica status solidi. PSS-RRL. Rapid research letters</jtitle><date>2017-05</date><risdate>2017</risdate><volume>11</volume><issue>5</issue><epage>n/a</epage><issn>1862-6254</issn><eissn>1862-6270</eissn><abstract>Radial junction solar cell has been proposed as an alternative device geometry to conventional planar solar cells with its remarkable electrical and optical performance. In this geometry, micro/nano pillars on the surface allow minority carrier collection in the radial direction and shorten the carrier diffusion length. Moreover, increased light trapping in the pillars and reduced reflection from surface enhance the solar cell efficiency. In their letter (article no. 1600444) Baytemir et al. have investigated radial junction solar cells which have different micropillar length to observe the effect of micropillar length on optical and electrical performance of the solar cells. Photolithography and metal assisted etching (MAE) techniques have been used to form well‐ordered silicon micropillar arrays, and different length of micropillars has been obtained by changing metal assisted etching time. It is observed that etching time and micropillar length are directly proportional. Moreover, both reflection and Jsc results show that optical absorption increases with increasing micropillar length. However, surface area and deteriorations on the surface increase with etching time. Therefore, there is still room to improve the solar cell efficiency with a proper passivation scheme.</abstract><cop>Berlin</cop><pub>WILEY‐VCH Verlag Berlin GmbH</pub><doi>10.1002/pssr.201770326</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1862-6254 |
ispartof | Physica status solidi. PSS-RRL. Rapid research letters, 2017-05, Vol.11 (5), p.n/a |
issn | 1862-6254 1862-6270 |
language | eng |
recordid | cdi_proquest_journals_1899318655 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Diffusion length Etching Minority carriers Photolithography Photovoltaic cells Reflection Silicon Silicon wafers Solar cells |
title | Radial junction solar cells prepared on single crystalline silicon wafers by metal‐assisted etching (Phys. Status Solidi RRL 5/2017) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T12%3A53%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Radial%20junction%20solar%20cells%20prepared%20on%20single%20crystalline%20silicon%20wafers%20by%20metal%E2%80%90assisted%20etching%20(Phys.%20Status%20Solidi%20RRL%205/2017)&rft.jtitle=Physica%20status%20solidi.%20PSS-RRL.%20Rapid%20research%20letters&rft.au=Baytemir,%20Gulsen&rft.date=2017-05&rft.volume=11&rft.issue=5&rft.epage=n/a&rft.issn=1862-6254&rft.eissn=1862-6270&rft_id=info:doi/10.1002/pssr.201770326&rft_dat=%3Cproquest_cross%3E1899318655%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1899318655&rft_id=info:pmid/&rfr_iscdi=true |