Minimal Spanning Trees on Infinite Sets
Minimal spanning trees on infinite vertex sets are investigated. A criterion for minimality of a spanning tree having a finite length is obtained, which generalizes the corresponding classical result for finite sets. It gives an analytic description of the set of all infinite metric spaces which a m...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical sciences (New York, N.Y.) N.Y.), 2017-06, Vol.223 (6), p.711-719 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 719 |
---|---|
container_issue | 6 |
container_start_page | 711 |
container_title | Journal of mathematical sciences (New York, N.Y.) |
container_volume | 223 |
creator | Ivanov, A. O. Tuzhilin, A. A. |
description | Minimal spanning trees on infinite vertex sets are investigated. A criterion for minimality of a spanning tree having a finite length is obtained, which generalizes the corresponding classical result for finite sets. It gives an analytic description of the set of all infinite metric spaces which a minimal spanning tree exists for. A sufficient condition for the existence of a minimal spanning tree is obtained in terms of distance achievability between elements of a partition of the metric space under consideration. In addition, a concept of a locally minimal spanning tree is introduced, several properties of such trees are described, and relations of those trees with (globally) minimal spanning trees are investigated. |
doi_str_mv | 10.1007/s10958-017-3380-x |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_1899081740</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A500133420</galeid><sourcerecordid>A500133420</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322x-a3f6a2df014ce28a4db850f33be0a031e6bdfca68a6cc354834de43fc6521b623</originalsourceid><addsrcrecordid>eNp1kU1LAzEQhhdRsFZ_gLcFD-IhdZLsR3os4kehIth6DtnsZNmyzdZkC-u_N2UFLVRySMg8zwzMG0XXFCYUIL_3FKapIEBzwrkA0p9EI5rmnIh8mp6GN-QsVPLkPLrwfg3ByQQfRbevta03qomXW2Vtbat45RB93Np4bk2odRgvsfOX0ZlRjcern3scfTw9rh5eyOLtef4wWxDNGeuJ4iZTrDRAE41MqKQsRAqG8wJBAaeYFaXRKhMq05qnieBJiQk3OksZLTLGx9HN0Hfr2s8d-k6u252zYaSkYjoFQfMEfqlKNShra9rOKb2pvZazFIBynrA9RY5QFVp0qmktmjp8H_CTI3w4JW5qfVS4OxAC02HfVWrnvZwv3w9ZOrDatd47NHLrwuLdl6Qg9xHKIUIZIpT7CGUfHDY4PrC2QvdnGf9K316Jmj0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899081740</pqid></control><display><type>article</type><title>Minimal Spanning Trees on Infinite Sets</title><source>SpringerLink Journals - AutoHoldings</source><creator>Ivanov, A. O. ; Tuzhilin, A. A.</creator><creatorcontrib>Ivanov, A. O. ; Tuzhilin, A. A.</creatorcontrib><description>Minimal spanning trees on infinite vertex sets are investigated. A criterion for minimality of a spanning tree having a finite length is obtained, which generalizes the corresponding classical result for finite sets. It gives an analytic description of the set of all infinite metric spaces which a minimal spanning tree exists for. A sufficient condition for the existence of a minimal spanning tree is obtained in terms of distance achievability between elements of a partition of the metric space under consideration. In addition, a concept of a locally minimal spanning tree is introduced, several properties of such trees are described, and relations of those trees with (globally) minimal spanning trees are investigated.</description><identifier>ISSN: 1072-3374</identifier><identifier>EISSN: 1573-8795</identifier><identifier>DOI: 10.1007/s10958-017-3380-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Ethernet ; Graph theory ; Mathematics ; Mathematics and Statistics ; Metric space ; Trees ; Vertex sets</subject><ispartof>Journal of mathematical sciences (New York, N.Y.), 2017-06, Vol.223 (6), p.711-719</ispartof><rights>Springer Science+Business Media New York 2017</rights><rights>COPYRIGHT 2017 Springer</rights><rights>Copyright Springer Science & Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c322x-a3f6a2df014ce28a4db850f33be0a031e6bdfca68a6cc354834de43fc6521b623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10958-017-3380-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10958-017-3380-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Ivanov, A. O.</creatorcontrib><creatorcontrib>Tuzhilin, A. A.</creatorcontrib><title>Minimal Spanning Trees on Infinite Sets</title><title>Journal of mathematical sciences (New York, N.Y.)</title><addtitle>J Math Sci</addtitle><description>Minimal spanning trees on infinite vertex sets are investigated. A criterion for minimality of a spanning tree having a finite length is obtained, which generalizes the corresponding classical result for finite sets. It gives an analytic description of the set of all infinite metric spaces which a minimal spanning tree exists for. A sufficient condition for the existence of a minimal spanning tree is obtained in terms of distance achievability between elements of a partition of the metric space under consideration. In addition, a concept of a locally minimal spanning tree is introduced, several properties of such trees are described, and relations of those trees with (globally) minimal spanning trees are investigated.</description><subject>Ethernet</subject><subject>Graph theory</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Metric space</subject><subject>Trees</subject><subject>Vertex sets</subject><issn>1072-3374</issn><issn>1573-8795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kU1LAzEQhhdRsFZ_gLcFD-IhdZLsR3os4kehIth6DtnsZNmyzdZkC-u_N2UFLVRySMg8zwzMG0XXFCYUIL_3FKapIEBzwrkA0p9EI5rmnIh8mp6GN-QsVPLkPLrwfg3ByQQfRbevta03qomXW2Vtbat45RB93Np4bk2odRgvsfOX0ZlRjcern3scfTw9rh5eyOLtef4wWxDNGeuJ4iZTrDRAE41MqKQsRAqG8wJBAaeYFaXRKhMq05qnieBJiQk3OksZLTLGx9HN0Hfr2s8d-k6u252zYaSkYjoFQfMEfqlKNShra9rOKb2pvZazFIBynrA9RY5QFVp0qmktmjp8H_CTI3w4JW5qfVS4OxAC02HfVWrnvZwv3w9ZOrDatd47NHLrwuLdl6Qg9xHKIUIZIpT7CGUfHDY4PrC2QvdnGf9K316Jmj0</recordid><startdate>20170609</startdate><enddate>20170609</enddate><creator>Ivanov, A. O.</creator><creator>Tuzhilin, A. A.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20170609</creationdate><title>Minimal Spanning Trees on Infinite Sets</title><author>Ivanov, A. O. ; Tuzhilin, A. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322x-a3f6a2df014ce28a4db850f33be0a031e6bdfca68a6cc354834de43fc6521b623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Ethernet</topic><topic>Graph theory</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Metric space</topic><topic>Trees</topic><topic>Vertex sets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ivanov, A. O.</creatorcontrib><creatorcontrib>Tuzhilin, A. A.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ivanov, A. O.</au><au>Tuzhilin, A. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Minimal Spanning Trees on Infinite Sets</atitle><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle><stitle>J Math Sci</stitle><date>2017-06-09</date><risdate>2017</risdate><volume>223</volume><issue>6</issue><spage>711</spage><epage>719</epage><pages>711-719</pages><issn>1072-3374</issn><eissn>1573-8795</eissn><abstract>Minimal spanning trees on infinite vertex sets are investigated. A criterion for minimality of a spanning tree having a finite length is obtained, which generalizes the corresponding classical result for finite sets. It gives an analytic description of the set of all infinite metric spaces which a minimal spanning tree exists for. A sufficient condition for the existence of a minimal spanning tree is obtained in terms of distance achievability between elements of a partition of the metric space under consideration. In addition, a concept of a locally minimal spanning tree is introduced, several properties of such trees are described, and relations of those trees with (globally) minimal spanning trees are investigated.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10958-017-3380-x</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1072-3374 |
ispartof | Journal of mathematical sciences (New York, N.Y.), 2017-06, Vol.223 (6), p.711-719 |
issn | 1072-3374 1573-8795 |
language | eng |
recordid | cdi_proquest_journals_1899081740 |
source | SpringerLink Journals - AutoHoldings |
subjects | Ethernet Graph theory Mathematics Mathematics and Statistics Metric space Trees Vertex sets |
title | Minimal Spanning Trees on Infinite Sets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T11%3A34%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Minimal%20Spanning%20Trees%20on%20Infinite%20Sets&rft.jtitle=Journal%20of%20mathematical%20sciences%20(New%20York,%20N.Y.)&rft.au=Ivanov,%20A.%20O.&rft.date=2017-06-09&rft.volume=223&rft.issue=6&rft.spage=711&rft.epage=719&rft.pages=711-719&rft.issn=1072-3374&rft.eissn=1573-8795&rft_id=info:doi/10.1007/s10958-017-3380-x&rft_dat=%3Cgale_proqu%3EA500133420%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1899081740&rft_id=info:pmid/&rft_galeid=A500133420&rfr_iscdi=true |