On the Completeness of the Manakov Integrals
The aim of this note is to present a simple proof of the completeness of the Manakov integrals for a motion of a rigid body fixed at a point in ℝ n , as well as for geodesic flows on a class of homogeneous spaces SO( n ) / SO( n 1 ) ×· · ·× SO( n r ).
Gespeichert in:
Veröffentlicht in: | Journal of mathematical sciences (New York, N.Y.) N.Y.), 2017-06, Vol.223 (6), p.675-685 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 685 |
---|---|
container_issue | 6 |
container_start_page | 675 |
container_title | Journal of mathematical sciences (New York, N.Y.) |
container_volume | 223 |
creator | Gajic, B Dragovic, V Jovanovic, B |
description | The aim of this note is to present a simple proof of the completeness of the Manakov integrals for a motion of a rigid body fixed at a point in ℝ
n
, as well as for geodesic flows on a class of homogeneous spaces SO(
n
)
/
SO(
n
1
)
×· · ·×
SO(
n
r
). |
doi_str_mv | 10.1007/s10958-017-3377-5 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_1899080750</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A500133417</galeid><sourcerecordid>A500133417</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3705-bcfd6bb49037d373ff4636637c8730a038f8715f2dbc39619b625dc434d938ab3</originalsourceid><addsrcrecordid>eNp1kV1LwzAUhosoOKc_wLuCV4KZJz1Nk17K8GMwGfhxHdI0qZ1bO5NO9N-bWUEHk1yccPI8CSdvFJ1SGFEAfukp5EwQoJwgck7YXjSgjCMRPGf7YQ882Zykh9GR93MITiZwEF3Mmrh7MfG4Xa4WpjON8T5u7XfvXjXqtX2PJ01nKqcW_jg6sKGYk586jJ5vrp_Gd2Q6u52Mr6ZEIwdGCm3LrCjSHJCXyNHaNMMsQ64FR1CAwgpOmU3KQmOe0bzIElbqFNMyR6EKHEZn_b0r176tje_kvF27JjwpqchzEMAZ_FKVWhhZN7btnNLL2mt5xQAoYkp5oMgOqgqDhonaxtg6tLf40Q4-rNIsa71TON8SAtOZj65Sa-_l5PFhm6U9q13rvTNWrly9VO5TUpCbHGWfoww5yk2OkgUn6R0f2KYy7s9n_Ct9AeEEmlQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899080750</pqid></control><display><type>article</type><title>On the Completeness of the Manakov Integrals</title><source>Springer Nature - Complete Springer Journals</source><creator>Gajic, B ; Dragovic, V ; Jovanovic, B</creator><creatorcontrib>Gajic, B ; Dragovic, V ; Jovanovic, B</creatorcontrib><description>The aim of this note is to present a simple proof of the completeness of the Manakov integrals for a motion of a rigid body fixed at a point in ℝ
n
, as well as for geodesic flows on a class of homogeneous spaces SO(
n
)
/
SO(
n
1
)
×· · ·×
SO(
n
r
).</description><identifier>ISSN: 1072-3374</identifier><identifier>EISSN: 1573-8795</identifier><identifier>DOI: 10.1007/s10958-017-3377-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algebra ; Completeness ; Integrals ; Mathematics ; Mathematics and Statistics ; Rigid-body dynamics</subject><ispartof>Journal of mathematical sciences (New York, N.Y.), 2017-06, Vol.223 (6), p.675-685</ispartof><rights>Springer Science+Business Media New York 2017</rights><rights>COPYRIGHT 2017 Springer</rights><rights>Copyright Springer Science & Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3705-bcfd6bb49037d373ff4636637c8730a038f8715f2dbc39619b625dc434d938ab3</citedby><cites>FETCH-LOGICAL-c3705-bcfd6bb49037d373ff4636637c8730a038f8715f2dbc39619b625dc434d938ab3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10958-017-3377-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10958-017-3377-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Gajic, B</creatorcontrib><creatorcontrib>Dragovic, V</creatorcontrib><creatorcontrib>Jovanovic, B</creatorcontrib><title>On the Completeness of the Manakov Integrals</title><title>Journal of mathematical sciences (New York, N.Y.)</title><addtitle>J Math Sci</addtitle><description>The aim of this note is to present a simple proof of the completeness of the Manakov integrals for a motion of a rigid body fixed at a point in ℝ
n
, as well as for geodesic flows on a class of homogeneous spaces SO(
n
)
/
SO(
n
1
)
×· · ·×
SO(
n
r
).</description><subject>Algebra</subject><subject>Completeness</subject><subject>Integrals</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Rigid-body dynamics</subject><issn>1072-3374</issn><issn>1573-8795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kV1LwzAUhosoOKc_wLuCV4KZJz1Nk17K8GMwGfhxHdI0qZ1bO5NO9N-bWUEHk1yccPI8CSdvFJ1SGFEAfukp5EwQoJwgck7YXjSgjCMRPGf7YQ882Zykh9GR93MITiZwEF3Mmrh7MfG4Xa4WpjON8T5u7XfvXjXqtX2PJ01nKqcW_jg6sKGYk586jJ5vrp_Gd2Q6u52Mr6ZEIwdGCm3LrCjSHJCXyNHaNMMsQ64FR1CAwgpOmU3KQmOe0bzIElbqFNMyR6EKHEZn_b0r176tje_kvF27JjwpqchzEMAZ_FKVWhhZN7btnNLL2mt5xQAoYkp5oMgOqgqDhonaxtg6tLf40Q4-rNIsa71TON8SAtOZj65Sa-_l5PFhm6U9q13rvTNWrly9VO5TUpCbHGWfoww5yk2OkgUn6R0f2KYy7s9n_Ct9AeEEmlQ</recordid><startdate>20170609</startdate><enddate>20170609</enddate><creator>Gajic, B</creator><creator>Dragovic, V</creator><creator>Jovanovic, B</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20170609</creationdate><title>On the Completeness of the Manakov Integrals</title><author>Gajic, B ; Dragovic, V ; Jovanovic, B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3705-bcfd6bb49037d373ff4636637c8730a038f8715f2dbc39619b625dc434d938ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algebra</topic><topic>Completeness</topic><topic>Integrals</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Rigid-body dynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gajic, B</creatorcontrib><creatorcontrib>Dragovic, V</creatorcontrib><creatorcontrib>Jovanovic, B</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gajic, B</au><au>Dragovic, V</au><au>Jovanovic, B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Completeness of the Manakov Integrals</atitle><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle><stitle>J Math Sci</stitle><date>2017-06-09</date><risdate>2017</risdate><volume>223</volume><issue>6</issue><spage>675</spage><epage>685</epage><pages>675-685</pages><issn>1072-3374</issn><eissn>1573-8795</eissn><abstract>The aim of this note is to present a simple proof of the completeness of the Manakov integrals for a motion of a rigid body fixed at a point in ℝ
n
, as well as for geodesic flows on a class of homogeneous spaces SO(
n
)
/
SO(
n
1
)
×· · ·×
SO(
n
r
).</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10958-017-3377-5</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1072-3374 |
ispartof | Journal of mathematical sciences (New York, N.Y.), 2017-06, Vol.223 (6), p.675-685 |
issn | 1072-3374 1573-8795 |
language | eng |
recordid | cdi_proquest_journals_1899080750 |
source | Springer Nature - Complete Springer Journals |
subjects | Algebra Completeness Integrals Mathematics Mathematics and Statistics Rigid-body dynamics |
title | On the Completeness of the Manakov Integrals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T22%3A07%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Completeness%20of%20the%20Manakov%20Integrals&rft.jtitle=Journal%20of%20mathematical%20sciences%20(New%20York,%20N.Y.)&rft.au=Gajic,%20B&rft.date=2017-06-09&rft.volume=223&rft.issue=6&rft.spage=675&rft.epage=685&rft.pages=675-685&rft.issn=1072-3374&rft.eissn=1573-8795&rft_id=info:doi/10.1007/s10958-017-3377-5&rft_dat=%3Cgale_proqu%3EA500133417%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1899080750&rft_id=info:pmid/&rft_galeid=A500133417&rfr_iscdi=true |