Application of fecal near-infrared reflectance spectroscopy profiling for the prediction of diet nutritional characteristics and voluntary intake in beef cattle
The objective of this study was to evaluate the use of fecal near-infrared reflectance spectroscopy (NIRS) profiling to predict diet nutritional characteristics and voluntary DMI in beef cattle. Fecal samples were collected for growing cattle across 11 experiments in which individual animal performa...
Gespeichert in:
Veröffentlicht in: | Journal of animal science 2017, Vol.95 (1), p.447 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 447 |
container_title | Journal of animal science |
container_volume | 95 |
creator | Johnson, J. R. Carstens, G. E. Prince, S. D. Ominski, K. H. Wittenberg, K. M. Undi, M. Forbes, T.D. A. Hafla, A. N. Tolleson, D. R. Basarab, J. A. |
description | The objective of this study was to evaluate the use of fecal near-infrared reflectance spectroscopy (NIRS) profiling to predict diet nutritional characteristics and voluntary DMI in beef cattle. Fecal samples were collected for growing cattle across 11 experiments in which individual animal performance and DMI was measured. Dried and ground fecal composite samples collected from each animal were subjected to fecal NIRS analysis by a Foss NIRS 6500 scanning monochromator (Foss, Eden Prairie, MN) at the Grazingland Animal Nutrition Laboratory (Temple, TX). Fecal spectra were then used to develop equations to predict diet composition (trials 1 to 11; n = 408), digestibility (trials 1 to 5; n = 155), and DMI (trials 1 to 11; n = 408). Coefficients of determination for calibration (R2 c) and cross-validation (R2 cv) for prediction of diet nutritional characteristics were lower for NDF (R2 c = 0.85; R2 cv = 0.82) than for CP (R2 c = 0.90; R2 cv = 0.88). For the prediction of DMI, R2 c and R2 cv ranged from 0.69 and 0.67 for the prediction of trial-average DMI to 0.76 and 0.73 for the prediction of fecal-collection-period DMI. While the R2 c and R2 cv obtained for the prediction of DMI were lower than those obtained for the prediction of diet composition or digestibility, fecal NIRS prediction equations for DMI were successful in predicting the mean DMI of groups, as no differences were found for the prediction of fecal-collection-period DMI (Diff. = 1.10; P = 0.72) or trial DMI (Diff. = -0.47; P = 0.86). |
doi_str_mv | 10.2527/jas2016.0845 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1898951954</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1898951954</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1465-278f0b8b4e65d9187603abb4349d41e406ee72fbef09333cc3de0d82ad7a795c3</originalsourceid><addsrcrecordid>eNpNUc1KAzEYXETBWr35AAGvbs3v7uZYin9Q8KLnJZt8sanrZk2yQt_GRzWlFTzN8DEM880UxTXBCypofbdVkWJSLXDDxUkxI4KKkpGKnf7j58VFjFuMCRVSzIqf5Tj2Tqvk_IC8RRa06tEAKpRusEEFMCiA7UEnNWhAccws-Kj9uENj8Nb1bnhH1geUNpAvYJz-MzMOEhqmFNz-kn31RgWlEwQXk9MRqcGgb99PQ1Jhh1yGD8iAOgCLcqjUw2VxZlUf4eqI8-Lt4f519VSuXx6fV8t1qQmvREnrxuKu6ThUwkjS1BVmqus449JwAhxXADW1HVgsGWNaMwPYNFSZWtVSaDYvbg6--amvCWJqt34KOXRsSSMbKYgUPKtuDyqdO4i5mHYM7jOHbwlu9xu0xw3a_QbsF6lifmA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1898951954</pqid></control><display><type>article</type><title>Application of fecal near-infrared reflectance spectroscopy profiling for the prediction of diet nutritional characteristics and voluntary intake in beef cattle</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Johnson, J. R. ; Carstens, G. E. ; Prince, S. D. ; Ominski, K. H. ; Wittenberg, K. M. ; Undi, M. ; Forbes, T.D. A. ; Hafla, A. N. ; Tolleson, D. R. ; Basarab, J. A.</creator><creatorcontrib>Johnson, J. R. ; Carstens, G. E. ; Prince, S. D. ; Ominski, K. H. ; Wittenberg, K. M. ; Undi, M. ; Forbes, T.D. A. ; Hafla, A. N. ; Tolleson, D. R. ; Basarab, J. A.</creatorcontrib><description>The objective of this study was to evaluate the use of fecal near-infrared reflectance spectroscopy (NIRS) profiling to predict diet nutritional characteristics and voluntary DMI in beef cattle. Fecal samples were collected for growing cattle across 11 experiments in which individual animal performance and DMI was measured. Dried and ground fecal composite samples collected from each animal were subjected to fecal NIRS analysis by a Foss NIRS 6500 scanning monochromator (Foss, Eden Prairie, MN) at the Grazingland Animal Nutrition Laboratory (Temple, TX). Fecal spectra were then used to develop equations to predict diet composition (trials 1 to 11; n = 408), digestibility (trials 1 to 5; n = 155), and DMI (trials 1 to 11; n = 408). Coefficients of determination for calibration (R2 c) and cross-validation (R2 cv) for prediction of diet nutritional characteristics were lower for NDF (R2 c = 0.85; R2 cv = 0.82) than for CP (R2 c = 0.90; R2 cv = 0.88). For the prediction of DMI, R2 c and R2 cv ranged from 0.69 and 0.67 for the prediction of trial-average DMI to 0.76 and 0.73 for the prediction of fecal-collection-period DMI. While the R2 c and R2 cv obtained for the prediction of DMI were lower than those obtained for the prediction of diet composition or digestibility, fecal NIRS prediction equations for DMI were successful in predicting the mean DMI of groups, as no differences were found for the prediction of fecal-collection-period DMI (Diff. = 1.10; P = 0.72) or trial DMI (Diff. = -0.47; P = 0.86).</description><identifier>ISSN: 1525-3163</identifier><identifier>ISSN: 0021-8812</identifier><identifier>EISSN: 1525-3163</identifier><identifier>DOI: 10.2527/jas2016.0845</identifier><language>eng</language><publisher>Champaign: Oxford University Press</publisher><subject>Animal nutrition ; Beef ; Beef cattle ; Cattle ; Composition ; Diet ; Digestibility ; Digestive system ; Feeds ; I.R. radiation ; Infrared analysis ; Infrared reflection ; Infrared spectroscopy ; Mathematical models ; Near infrared radiation ; Nutrition ; Predictions ; Reflectance ; Scanning ; Spectroscopy</subject><ispartof>Journal of animal science, 2017, Vol.95 (1), p.447</ispartof><rights>Copyright American Society of Animal Science Jan 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1465-278f0b8b4e65d9187603abb4349d41e406ee72fbef09333cc3de0d82ad7a795c3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4009,27902,27903,27904</link.rule.ids></links><search><creatorcontrib>Johnson, J. R.</creatorcontrib><creatorcontrib>Carstens, G. E.</creatorcontrib><creatorcontrib>Prince, S. D.</creatorcontrib><creatorcontrib>Ominski, K. H.</creatorcontrib><creatorcontrib>Wittenberg, K. M.</creatorcontrib><creatorcontrib>Undi, M.</creatorcontrib><creatorcontrib>Forbes, T.D. A.</creatorcontrib><creatorcontrib>Hafla, A. N.</creatorcontrib><creatorcontrib>Tolleson, D. R.</creatorcontrib><creatorcontrib>Basarab, J. A.</creatorcontrib><title>Application of fecal near-infrared reflectance spectroscopy profiling for the prediction of diet nutritional characteristics and voluntary intake in beef cattle</title><title>Journal of animal science</title><description>The objective of this study was to evaluate the use of fecal near-infrared reflectance spectroscopy (NIRS) profiling to predict diet nutritional characteristics and voluntary DMI in beef cattle. Fecal samples were collected for growing cattle across 11 experiments in which individual animal performance and DMI was measured. Dried and ground fecal composite samples collected from each animal were subjected to fecal NIRS analysis by a Foss NIRS 6500 scanning monochromator (Foss, Eden Prairie, MN) at the Grazingland Animal Nutrition Laboratory (Temple, TX). Fecal spectra were then used to develop equations to predict diet composition (trials 1 to 11; n = 408), digestibility (trials 1 to 5; n = 155), and DMI (trials 1 to 11; n = 408). Coefficients of determination for calibration (R2 c) and cross-validation (R2 cv) for prediction of diet nutritional characteristics were lower for NDF (R2 c = 0.85; R2 cv = 0.82) than for CP (R2 c = 0.90; R2 cv = 0.88). For the prediction of DMI, R2 c and R2 cv ranged from 0.69 and 0.67 for the prediction of trial-average DMI to 0.76 and 0.73 for the prediction of fecal-collection-period DMI. While the R2 c and R2 cv obtained for the prediction of DMI were lower than those obtained for the prediction of diet composition or digestibility, fecal NIRS prediction equations for DMI were successful in predicting the mean DMI of groups, as no differences were found for the prediction of fecal-collection-period DMI (Diff. = 1.10; P = 0.72) or trial DMI (Diff. = -0.47; P = 0.86).</description><subject>Animal nutrition</subject><subject>Beef</subject><subject>Beef cattle</subject><subject>Cattle</subject><subject>Composition</subject><subject>Diet</subject><subject>Digestibility</subject><subject>Digestive system</subject><subject>Feeds</subject><subject>I.R. radiation</subject><subject>Infrared analysis</subject><subject>Infrared reflection</subject><subject>Infrared spectroscopy</subject><subject>Mathematical models</subject><subject>Near infrared radiation</subject><subject>Nutrition</subject><subject>Predictions</subject><subject>Reflectance</subject><subject>Scanning</subject><subject>Spectroscopy</subject><issn>1525-3163</issn><issn>0021-8812</issn><issn>1525-3163</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpNUc1KAzEYXETBWr35AAGvbs3v7uZYin9Q8KLnJZt8sanrZk2yQt_GRzWlFTzN8DEM880UxTXBCypofbdVkWJSLXDDxUkxI4KKkpGKnf7j58VFjFuMCRVSzIqf5Tj2Tqvk_IC8RRa06tEAKpRusEEFMCiA7UEnNWhAccws-Kj9uENj8Nb1bnhH1geUNpAvYJz-MzMOEhqmFNz-kn31RgWlEwQXk9MRqcGgb99PQ1Jhh1yGD8iAOgCLcqjUw2VxZlUf4eqI8-Lt4f519VSuXx6fV8t1qQmvREnrxuKu6ThUwkjS1BVmqus449JwAhxXADW1HVgsGWNaMwPYNFSZWtVSaDYvbg6--amvCWJqt34KOXRsSSMbKYgUPKtuDyqdO4i5mHYM7jOHbwlu9xu0xw3a_QbsF6lifmA</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Johnson, J. R.</creator><creator>Carstens, G. E.</creator><creator>Prince, S. D.</creator><creator>Ominski, K. H.</creator><creator>Wittenberg, K. M.</creator><creator>Undi, M.</creator><creator>Forbes, T.D. A.</creator><creator>Hafla, A. N.</creator><creator>Tolleson, D. R.</creator><creator>Basarab, J. A.</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope><scope>U9A</scope></search><sort><creationdate>2017</creationdate><title>Application of fecal near-infrared reflectance spectroscopy profiling for the prediction of diet nutritional characteristics and voluntary intake in beef cattle</title><author>Johnson, J. R. ; Carstens, G. E. ; Prince, S. D. ; Ominski, K. H. ; Wittenberg, K. M. ; Undi, M. ; Forbes, T.D. A. ; Hafla, A. N. ; Tolleson, D. R. ; Basarab, J. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1465-278f0b8b4e65d9187603abb4349d41e406ee72fbef09333cc3de0d82ad7a795c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animal nutrition</topic><topic>Beef</topic><topic>Beef cattle</topic><topic>Cattle</topic><topic>Composition</topic><topic>Diet</topic><topic>Digestibility</topic><topic>Digestive system</topic><topic>Feeds</topic><topic>I.R. radiation</topic><topic>Infrared analysis</topic><topic>Infrared reflection</topic><topic>Infrared spectroscopy</topic><topic>Mathematical models</topic><topic>Near infrared radiation</topic><topic>Nutrition</topic><topic>Predictions</topic><topic>Reflectance</topic><topic>Scanning</topic><topic>Spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Johnson, J. R.</creatorcontrib><creatorcontrib>Carstens, G. E.</creatorcontrib><creatorcontrib>Prince, S. D.</creatorcontrib><creatorcontrib>Ominski, K. H.</creatorcontrib><creatorcontrib>Wittenberg, K. M.</creatorcontrib><creatorcontrib>Undi, M.</creatorcontrib><creatorcontrib>Forbes, T.D. A.</creatorcontrib><creatorcontrib>Hafla, A. N.</creatorcontrib><creatorcontrib>Tolleson, D. R.</creatorcontrib><creatorcontrib>Basarab, J. A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career & Technical Education Database</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of animal science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Johnson, J. R.</au><au>Carstens, G. E.</au><au>Prince, S. D.</au><au>Ominski, K. H.</au><au>Wittenberg, K. M.</au><au>Undi, M.</au><au>Forbes, T.D. A.</au><au>Hafla, A. N.</au><au>Tolleson, D. R.</au><au>Basarab, J. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of fecal near-infrared reflectance spectroscopy profiling for the prediction of diet nutritional characteristics and voluntary intake in beef cattle</atitle><jtitle>Journal of animal science</jtitle><date>2017</date><risdate>2017</risdate><volume>95</volume><issue>1</issue><spage>447</spage><pages>447-</pages><issn>1525-3163</issn><issn>0021-8812</issn><eissn>1525-3163</eissn><abstract>The objective of this study was to evaluate the use of fecal near-infrared reflectance spectroscopy (NIRS) profiling to predict diet nutritional characteristics and voluntary DMI in beef cattle. Fecal samples were collected for growing cattle across 11 experiments in which individual animal performance and DMI was measured. Dried and ground fecal composite samples collected from each animal were subjected to fecal NIRS analysis by a Foss NIRS 6500 scanning monochromator (Foss, Eden Prairie, MN) at the Grazingland Animal Nutrition Laboratory (Temple, TX). Fecal spectra were then used to develop equations to predict diet composition (trials 1 to 11; n = 408), digestibility (trials 1 to 5; n = 155), and DMI (trials 1 to 11; n = 408). Coefficients of determination for calibration (R2 c) and cross-validation (R2 cv) for prediction of diet nutritional characteristics were lower for NDF (R2 c = 0.85; R2 cv = 0.82) than for CP (R2 c = 0.90; R2 cv = 0.88). For the prediction of DMI, R2 c and R2 cv ranged from 0.69 and 0.67 for the prediction of trial-average DMI to 0.76 and 0.73 for the prediction of fecal-collection-period DMI. While the R2 c and R2 cv obtained for the prediction of DMI were lower than those obtained for the prediction of diet composition or digestibility, fecal NIRS prediction equations for DMI were successful in predicting the mean DMI of groups, as no differences were found for the prediction of fecal-collection-period DMI (Diff. = 1.10; P = 0.72) or trial DMI (Diff. = -0.47; P = 0.86).</abstract><cop>Champaign</cop><pub>Oxford University Press</pub><doi>10.2527/jas2016.0845</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1525-3163 |
ispartof | Journal of animal science, 2017, Vol.95 (1), p.447 |
issn | 1525-3163 0021-8812 1525-3163 |
language | eng |
recordid | cdi_proquest_journals_1898951954 |
source | Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals |
subjects | Animal nutrition Beef Beef cattle Cattle Composition Diet Digestibility Digestive system Feeds I.R. radiation Infrared analysis Infrared reflection Infrared spectroscopy Mathematical models Near infrared radiation Nutrition Predictions Reflectance Scanning Spectroscopy |
title | Application of fecal near-infrared reflectance spectroscopy profiling for the prediction of diet nutritional characteristics and voluntary intake in beef cattle |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T00%3A58%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20fecal%20near-infrared%20reflectance%20spectroscopy%20profiling%20for%20the%20prediction%20of%20diet%20nutritional%20characteristics%20and%20voluntary%20intake%20in%20beef%20cattle&rft.jtitle=Journal%20of%20animal%20science&rft.au=Johnson,%20J.%20R.&rft.date=2017&rft.volume=95&rft.issue=1&rft.spage=447&rft.pages=447-&rft.issn=1525-3163&rft.eissn=1525-3163&rft_id=info:doi/10.2527/jas2016.0845&rft_dat=%3Cproquest_cross%3E1898951954%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1898951954&rft_id=info:pmid/&rfr_iscdi=true |