Explicit model predictive control of split-type air conditioning system

Domestic air conditioners are a major source of energy consumption. In this study, utilizing real-time data from a public domain, a cascaded hardware in loop approach to the control of room temperature is considered. An inner loop to control the supply air temperature by adjusting the electronic exp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the Institute of Measurement and Control 2017-05, Vol.39 (5), p.754-762
Hauptverfasser: Sahu, Chinmay, Kirubakaran, V, Radhakrishnan, TK, Sivakumaran, N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 762
container_issue 5
container_start_page 754
container_title Transactions of the Institute of Measurement and Control
container_volume 39
creator Sahu, Chinmay
Kirubakaran, V
Radhakrishnan, TK
Sivakumaran, N
description Domestic air conditioners are a major source of energy consumption. In this study, utilizing real-time data from a public domain, a cascaded hardware in loop approach to the control of room temperature is considered. An inner loop to control the supply air temperature by adjusting the electronic expansion valve using a second-order plus delay time model is proposed. The room temperature control is considered the outer loop. A simplified lumped parameter representation of the thermal dynamics of the building is modelled in MATLAB using ordinary differential equations. A constrained multi parametric model predictive controller (mpMPC) is designed for both the control loops. The constraints include safety limits on the superheat and manipulation rates for the inner loop and a rate constraint on the reference signal in the outer loop. Model uncertainties like ambient temperature and thermal load variations (representing an office space) are considered for hardware in the loop testing of the proposed strategy. From performance analysis, using power spent and thermal comfort quantization, it is observed that the mpMPC scheme outperforms traditional control strategies.
doi_str_mv 10.1177/0142331215619976
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1898548129</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0142331215619976</sage_id><sourcerecordid>1898548129</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-5d69096bb3b08ebc6062e124ce3b0169fe5139fd9b9d08d487c290f83b0c35723</originalsourceid><addsrcrecordid>eNp1kMFLwzAUh4MoOKd3jwHP0bwkTZqjjDmFgRc9lzZJR0bX1CQT-9_bMg8ieHrwvu_3HvwQugV6D6DUAwXBOAcGhQStlTxDCxBKEcqlPkeLGZOZX6KrlPaUUiGkWKDN-mvovPEZH4J1HR6is95k_-mwCX2OocOhxWlyMsnj4HDt40yszz70vt_hNKbsDtfooq275G5-5hK9P63fVs9k-7p5WT1uieFUZ1JYqamWTcMbWrrGSCqZAyaMmxYgdesK4Lq1utGWllaUyjBN23KihheK8SW6O90dYvg4upSrfTjGfnpZQanLQpTA9GTRk2ViSCm6thqiP9RxrIBWc13V37qmCDlFUr1zv47-538Dbg1pXg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1898548129</pqid></control><display><type>article</type><title>Explicit model predictive control of split-type air conditioning system</title><source>Access via SAGE</source><creator>Sahu, Chinmay ; Kirubakaran, V ; Radhakrishnan, TK ; Sivakumaran, N</creator><creatorcontrib>Sahu, Chinmay ; Kirubakaran, V ; Radhakrishnan, TK ; Sivakumaran, N</creatorcontrib><description>Domestic air conditioners are a major source of energy consumption. In this study, utilizing real-time data from a public domain, a cascaded hardware in loop approach to the control of room temperature is considered. An inner loop to control the supply air temperature by adjusting the electronic expansion valve using a second-order plus delay time model is proposed. The room temperature control is considered the outer loop. A simplified lumped parameter representation of the thermal dynamics of the building is modelled in MATLAB using ordinary differential equations. A constrained multi parametric model predictive controller (mpMPC) is designed for both the control loops. The constraints include safety limits on the superheat and manipulation rates for the inner loop and a rate constraint on the reference signal in the outer loop. Model uncertainties like ambient temperature and thermal load variations (representing an office space) are considered for hardware in the loop testing of the proposed strategy. From performance analysis, using power spent and thermal comfort quantization, it is observed that the mpMPC scheme outperforms traditional control strategies.</description><identifier>ISSN: 0142-3312</identifier><identifier>EISSN: 1477-0369</identifier><identifier>DOI: 10.1177/0142331215619976</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Air conditioners ; Air conditioning ; Air temperature ; Ambient temperature ; Constraints ; Control systems design ; Delay time ; Differential equations ; Energy consumption ; Energy sources ; Gas expanders ; Hardware ; Load fluctuation ; Ordinary differential equations ; Predictive control ; Public domain ; Reference signals ; Room temperature ; Temperature control ; Thermal analysis ; Thermal comfort</subject><ispartof>Transactions of the Institute of Measurement and Control, 2017-05, Vol.39 (5), p.754-762</ispartof><rights>The Author(s) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c309t-5d69096bb3b08ebc6062e124ce3b0169fe5139fd9b9d08d487c290f83b0c35723</citedby><cites>FETCH-LOGICAL-c309t-5d69096bb3b08ebc6062e124ce3b0169fe5139fd9b9d08d487c290f83b0c35723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0142331215619976$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0142331215619976$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21819,27924,27925,43621,43622</link.rule.ids></links><search><creatorcontrib>Sahu, Chinmay</creatorcontrib><creatorcontrib>Kirubakaran, V</creatorcontrib><creatorcontrib>Radhakrishnan, TK</creatorcontrib><creatorcontrib>Sivakumaran, N</creatorcontrib><title>Explicit model predictive control of split-type air conditioning system</title><title>Transactions of the Institute of Measurement and Control</title><description>Domestic air conditioners are a major source of energy consumption. In this study, utilizing real-time data from a public domain, a cascaded hardware in loop approach to the control of room temperature is considered. An inner loop to control the supply air temperature by adjusting the electronic expansion valve using a second-order plus delay time model is proposed. The room temperature control is considered the outer loop. A simplified lumped parameter representation of the thermal dynamics of the building is modelled in MATLAB using ordinary differential equations. A constrained multi parametric model predictive controller (mpMPC) is designed for both the control loops. The constraints include safety limits on the superheat and manipulation rates for the inner loop and a rate constraint on the reference signal in the outer loop. Model uncertainties like ambient temperature and thermal load variations (representing an office space) are considered for hardware in the loop testing of the proposed strategy. From performance analysis, using power spent and thermal comfort quantization, it is observed that the mpMPC scheme outperforms traditional control strategies.</description><subject>Air conditioners</subject><subject>Air conditioning</subject><subject>Air temperature</subject><subject>Ambient temperature</subject><subject>Constraints</subject><subject>Control systems design</subject><subject>Delay time</subject><subject>Differential equations</subject><subject>Energy consumption</subject><subject>Energy sources</subject><subject>Gas expanders</subject><subject>Hardware</subject><subject>Load fluctuation</subject><subject>Ordinary differential equations</subject><subject>Predictive control</subject><subject>Public domain</subject><subject>Reference signals</subject><subject>Room temperature</subject><subject>Temperature control</subject><subject>Thermal analysis</subject><subject>Thermal comfort</subject><issn>0142-3312</issn><issn>1477-0369</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kMFLwzAUh4MoOKd3jwHP0bwkTZqjjDmFgRc9lzZJR0bX1CQT-9_bMg8ieHrwvu_3HvwQugV6D6DUAwXBOAcGhQStlTxDCxBKEcqlPkeLGZOZX6KrlPaUUiGkWKDN-mvovPEZH4J1HR6is95k_-mwCX2OocOhxWlyMsnj4HDt40yszz70vt_hNKbsDtfooq275G5-5hK9P63fVs9k-7p5WT1uieFUZ1JYqamWTcMbWrrGSCqZAyaMmxYgdesK4Lq1utGWllaUyjBN23KihheK8SW6O90dYvg4upSrfTjGfnpZQanLQpTA9GTRk2ViSCm6thqiP9RxrIBWc13V37qmCDlFUr1zv47-538Dbg1pXg</recordid><startdate>201705</startdate><enddate>201705</enddate><creator>Sahu, Chinmay</creator><creator>Kirubakaran, V</creator><creator>Radhakrishnan, TK</creator><creator>Sivakumaran, N</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>201705</creationdate><title>Explicit model predictive control of split-type air conditioning system</title><author>Sahu, Chinmay ; Kirubakaran, V ; Radhakrishnan, TK ; Sivakumaran, N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-5d69096bb3b08ebc6062e124ce3b0169fe5139fd9b9d08d487c290f83b0c35723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Air conditioners</topic><topic>Air conditioning</topic><topic>Air temperature</topic><topic>Ambient temperature</topic><topic>Constraints</topic><topic>Control systems design</topic><topic>Delay time</topic><topic>Differential equations</topic><topic>Energy consumption</topic><topic>Energy sources</topic><topic>Gas expanders</topic><topic>Hardware</topic><topic>Load fluctuation</topic><topic>Ordinary differential equations</topic><topic>Predictive control</topic><topic>Public domain</topic><topic>Reference signals</topic><topic>Room temperature</topic><topic>Temperature control</topic><topic>Thermal analysis</topic><topic>Thermal comfort</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sahu, Chinmay</creatorcontrib><creatorcontrib>Kirubakaran, V</creatorcontrib><creatorcontrib>Radhakrishnan, TK</creatorcontrib><creatorcontrib>Sivakumaran, N</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Transactions of the Institute of Measurement and Control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sahu, Chinmay</au><au>Kirubakaran, V</au><au>Radhakrishnan, TK</au><au>Sivakumaran, N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Explicit model predictive control of split-type air conditioning system</atitle><jtitle>Transactions of the Institute of Measurement and Control</jtitle><date>2017-05</date><risdate>2017</risdate><volume>39</volume><issue>5</issue><spage>754</spage><epage>762</epage><pages>754-762</pages><issn>0142-3312</issn><eissn>1477-0369</eissn><abstract>Domestic air conditioners are a major source of energy consumption. In this study, utilizing real-time data from a public domain, a cascaded hardware in loop approach to the control of room temperature is considered. An inner loop to control the supply air temperature by adjusting the electronic expansion valve using a second-order plus delay time model is proposed. The room temperature control is considered the outer loop. A simplified lumped parameter representation of the thermal dynamics of the building is modelled in MATLAB using ordinary differential equations. A constrained multi parametric model predictive controller (mpMPC) is designed for both the control loops. The constraints include safety limits on the superheat and manipulation rates for the inner loop and a rate constraint on the reference signal in the outer loop. Model uncertainties like ambient temperature and thermal load variations (representing an office space) are considered for hardware in the loop testing of the proposed strategy. From performance analysis, using power spent and thermal comfort quantization, it is observed that the mpMPC scheme outperforms traditional control strategies.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/0142331215619976</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0142-3312
ispartof Transactions of the Institute of Measurement and Control, 2017-05, Vol.39 (5), p.754-762
issn 0142-3312
1477-0369
language eng
recordid cdi_proquest_journals_1898548129
source Access via SAGE
subjects Air conditioners
Air conditioning
Air temperature
Ambient temperature
Constraints
Control systems design
Delay time
Differential equations
Energy consumption
Energy sources
Gas expanders
Hardware
Load fluctuation
Ordinary differential equations
Predictive control
Public domain
Reference signals
Room temperature
Temperature control
Thermal analysis
Thermal comfort
title Explicit model predictive control of split-type air conditioning system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T03%3A43%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Explicit%20model%20predictive%20control%20of%20split-type%20air%20conditioning%20system&rft.jtitle=Transactions%20of%20the%20Institute%20of%20Measurement%20and%20Control&rft.au=Sahu,%20Chinmay&rft.date=2017-05&rft.volume=39&rft.issue=5&rft.spage=754&rft.epage=762&rft.pages=754-762&rft.issn=0142-3312&rft.eissn=1477-0369&rft_id=info:doi/10.1177/0142331215619976&rft_dat=%3Cproquest_cross%3E1898548129%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1898548129&rft_id=info:pmid/&rft_sage_id=10.1177_0142331215619976&rfr_iscdi=true