Explicit model predictive control of split-type air conditioning system
Domestic air conditioners are a major source of energy consumption. In this study, utilizing real-time data from a public domain, a cascaded hardware in loop approach to the control of room temperature is considered. An inner loop to control the supply air temperature by adjusting the electronic exp...
Gespeichert in:
Veröffentlicht in: | Transactions of the Institute of Measurement and Control 2017-05, Vol.39 (5), p.754-762 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 762 |
---|---|
container_issue | 5 |
container_start_page | 754 |
container_title | Transactions of the Institute of Measurement and Control |
container_volume | 39 |
creator | Sahu, Chinmay Kirubakaran, V Radhakrishnan, TK Sivakumaran, N |
description | Domestic air conditioners are a major source of energy consumption. In this study, utilizing real-time data from a public domain, a cascaded hardware in loop approach to the control of room temperature is considered. An inner loop to control the supply air temperature by adjusting the electronic expansion valve using a second-order plus delay time model is proposed. The room temperature control is considered the outer loop. A simplified lumped parameter representation of the thermal dynamics of the building is modelled in MATLAB using ordinary differential equations. A constrained multi parametric model predictive controller (mpMPC) is designed for both the control loops. The constraints include safety limits on the superheat and manipulation rates for the inner loop and a rate constraint on the reference signal in the outer loop. Model uncertainties like ambient temperature and thermal load variations (representing an office space) are considered for hardware in the loop testing of the proposed strategy. From performance analysis, using power spent and thermal comfort quantization, it is observed that the mpMPC scheme outperforms traditional control strategies. |
doi_str_mv | 10.1177/0142331215619976 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1898548129</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0142331215619976</sage_id><sourcerecordid>1898548129</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-5d69096bb3b08ebc6062e124ce3b0169fe5139fd9b9d08d487c290f83b0c35723</originalsourceid><addsrcrecordid>eNp1kMFLwzAUh4MoOKd3jwHP0bwkTZqjjDmFgRc9lzZJR0bX1CQT-9_bMg8ieHrwvu_3HvwQugV6D6DUAwXBOAcGhQStlTxDCxBKEcqlPkeLGZOZX6KrlPaUUiGkWKDN-mvovPEZH4J1HR6is95k_-mwCX2OocOhxWlyMsnj4HDt40yszz70vt_hNKbsDtfooq275G5-5hK9P63fVs9k-7p5WT1uieFUZ1JYqamWTcMbWrrGSCqZAyaMmxYgdesK4Lq1utGWllaUyjBN23KihheK8SW6O90dYvg4upSrfTjGfnpZQanLQpTA9GTRk2ViSCm6thqiP9RxrIBWc13V37qmCDlFUr1zv47-538Dbg1pXg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1898548129</pqid></control><display><type>article</type><title>Explicit model predictive control of split-type air conditioning system</title><source>Access via SAGE</source><creator>Sahu, Chinmay ; Kirubakaran, V ; Radhakrishnan, TK ; Sivakumaran, N</creator><creatorcontrib>Sahu, Chinmay ; Kirubakaran, V ; Radhakrishnan, TK ; Sivakumaran, N</creatorcontrib><description>Domestic air conditioners are a major source of energy consumption. In this study, utilizing real-time data from a public domain, a cascaded hardware in loop approach to the control of room temperature is considered. An inner loop to control the supply air temperature by adjusting the electronic expansion valve using a second-order plus delay time model is proposed. The room temperature control is considered the outer loop. A simplified lumped parameter representation of the thermal dynamics of the building is modelled in MATLAB using ordinary differential equations. A constrained multi parametric model predictive controller (mpMPC) is designed for both the control loops. The constraints include safety limits on the superheat and manipulation rates for the inner loop and a rate constraint on the reference signal in the outer loop. Model uncertainties like ambient temperature and thermal load variations (representing an office space) are considered for hardware in the loop testing of the proposed strategy. From performance analysis, using power spent and thermal comfort quantization, it is observed that the mpMPC scheme outperforms traditional control strategies.</description><identifier>ISSN: 0142-3312</identifier><identifier>EISSN: 1477-0369</identifier><identifier>DOI: 10.1177/0142331215619976</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Air conditioners ; Air conditioning ; Air temperature ; Ambient temperature ; Constraints ; Control systems design ; Delay time ; Differential equations ; Energy consumption ; Energy sources ; Gas expanders ; Hardware ; Load fluctuation ; Ordinary differential equations ; Predictive control ; Public domain ; Reference signals ; Room temperature ; Temperature control ; Thermal analysis ; Thermal comfort</subject><ispartof>Transactions of the Institute of Measurement and Control, 2017-05, Vol.39 (5), p.754-762</ispartof><rights>The Author(s) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c309t-5d69096bb3b08ebc6062e124ce3b0169fe5139fd9b9d08d487c290f83b0c35723</citedby><cites>FETCH-LOGICAL-c309t-5d69096bb3b08ebc6062e124ce3b0169fe5139fd9b9d08d487c290f83b0c35723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0142331215619976$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0142331215619976$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21819,27924,27925,43621,43622</link.rule.ids></links><search><creatorcontrib>Sahu, Chinmay</creatorcontrib><creatorcontrib>Kirubakaran, V</creatorcontrib><creatorcontrib>Radhakrishnan, TK</creatorcontrib><creatorcontrib>Sivakumaran, N</creatorcontrib><title>Explicit model predictive control of split-type air conditioning system</title><title>Transactions of the Institute of Measurement and Control</title><description>Domestic air conditioners are a major source of energy consumption. In this study, utilizing real-time data from a public domain, a cascaded hardware in loop approach to the control of room temperature is considered. An inner loop to control the supply air temperature by adjusting the electronic expansion valve using a second-order plus delay time model is proposed. The room temperature control is considered the outer loop. A simplified lumped parameter representation of the thermal dynamics of the building is modelled in MATLAB using ordinary differential equations. A constrained multi parametric model predictive controller (mpMPC) is designed for both the control loops. The constraints include safety limits on the superheat and manipulation rates for the inner loop and a rate constraint on the reference signal in the outer loop. Model uncertainties like ambient temperature and thermal load variations (representing an office space) are considered for hardware in the loop testing of the proposed strategy. From performance analysis, using power spent and thermal comfort quantization, it is observed that the mpMPC scheme outperforms traditional control strategies.</description><subject>Air conditioners</subject><subject>Air conditioning</subject><subject>Air temperature</subject><subject>Ambient temperature</subject><subject>Constraints</subject><subject>Control systems design</subject><subject>Delay time</subject><subject>Differential equations</subject><subject>Energy consumption</subject><subject>Energy sources</subject><subject>Gas expanders</subject><subject>Hardware</subject><subject>Load fluctuation</subject><subject>Ordinary differential equations</subject><subject>Predictive control</subject><subject>Public domain</subject><subject>Reference signals</subject><subject>Room temperature</subject><subject>Temperature control</subject><subject>Thermal analysis</subject><subject>Thermal comfort</subject><issn>0142-3312</issn><issn>1477-0369</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kMFLwzAUh4MoOKd3jwHP0bwkTZqjjDmFgRc9lzZJR0bX1CQT-9_bMg8ieHrwvu_3HvwQugV6D6DUAwXBOAcGhQStlTxDCxBKEcqlPkeLGZOZX6KrlPaUUiGkWKDN-mvovPEZH4J1HR6is95k_-mwCX2OocOhxWlyMsnj4HDt40yszz70vt_hNKbsDtfooq275G5-5hK9P63fVs9k-7p5WT1uieFUZ1JYqamWTcMbWrrGSCqZAyaMmxYgdesK4Lq1utGWllaUyjBN23KihheK8SW6O90dYvg4upSrfTjGfnpZQanLQpTA9GTRk2ViSCm6thqiP9RxrIBWc13V37qmCDlFUr1zv47-538Dbg1pXg</recordid><startdate>201705</startdate><enddate>201705</enddate><creator>Sahu, Chinmay</creator><creator>Kirubakaran, V</creator><creator>Radhakrishnan, TK</creator><creator>Sivakumaran, N</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>201705</creationdate><title>Explicit model predictive control of split-type air conditioning system</title><author>Sahu, Chinmay ; Kirubakaran, V ; Radhakrishnan, TK ; Sivakumaran, N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-5d69096bb3b08ebc6062e124ce3b0169fe5139fd9b9d08d487c290f83b0c35723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Air conditioners</topic><topic>Air conditioning</topic><topic>Air temperature</topic><topic>Ambient temperature</topic><topic>Constraints</topic><topic>Control systems design</topic><topic>Delay time</topic><topic>Differential equations</topic><topic>Energy consumption</topic><topic>Energy sources</topic><topic>Gas expanders</topic><topic>Hardware</topic><topic>Load fluctuation</topic><topic>Ordinary differential equations</topic><topic>Predictive control</topic><topic>Public domain</topic><topic>Reference signals</topic><topic>Room temperature</topic><topic>Temperature control</topic><topic>Thermal analysis</topic><topic>Thermal comfort</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sahu, Chinmay</creatorcontrib><creatorcontrib>Kirubakaran, V</creatorcontrib><creatorcontrib>Radhakrishnan, TK</creatorcontrib><creatorcontrib>Sivakumaran, N</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Transactions of the Institute of Measurement and Control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sahu, Chinmay</au><au>Kirubakaran, V</au><au>Radhakrishnan, TK</au><au>Sivakumaran, N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Explicit model predictive control of split-type air conditioning system</atitle><jtitle>Transactions of the Institute of Measurement and Control</jtitle><date>2017-05</date><risdate>2017</risdate><volume>39</volume><issue>5</issue><spage>754</spage><epage>762</epage><pages>754-762</pages><issn>0142-3312</issn><eissn>1477-0369</eissn><abstract>Domestic air conditioners are a major source of energy consumption. In this study, utilizing real-time data from a public domain, a cascaded hardware in loop approach to the control of room temperature is considered. An inner loop to control the supply air temperature by adjusting the electronic expansion valve using a second-order plus delay time model is proposed. The room temperature control is considered the outer loop. A simplified lumped parameter representation of the thermal dynamics of the building is modelled in MATLAB using ordinary differential equations. A constrained multi parametric model predictive controller (mpMPC) is designed for both the control loops. The constraints include safety limits on the superheat and manipulation rates for the inner loop and a rate constraint on the reference signal in the outer loop. Model uncertainties like ambient temperature and thermal load variations (representing an office space) are considered for hardware in the loop testing of the proposed strategy. From performance analysis, using power spent and thermal comfort quantization, it is observed that the mpMPC scheme outperforms traditional control strategies.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/0142331215619976</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0142-3312 |
ispartof | Transactions of the Institute of Measurement and Control, 2017-05, Vol.39 (5), p.754-762 |
issn | 0142-3312 1477-0369 |
language | eng |
recordid | cdi_proquest_journals_1898548129 |
source | Access via SAGE |
subjects | Air conditioners Air conditioning Air temperature Ambient temperature Constraints Control systems design Delay time Differential equations Energy consumption Energy sources Gas expanders Hardware Load fluctuation Ordinary differential equations Predictive control Public domain Reference signals Room temperature Temperature control Thermal analysis Thermal comfort |
title | Explicit model predictive control of split-type air conditioning system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T03%3A43%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Explicit%20model%20predictive%20control%20of%20split-type%20air%20conditioning%20system&rft.jtitle=Transactions%20of%20the%20Institute%20of%20Measurement%20and%20Control&rft.au=Sahu,%20Chinmay&rft.date=2017-05&rft.volume=39&rft.issue=5&rft.spage=754&rft.epage=762&rft.pages=754-762&rft.issn=0142-3312&rft.eissn=1477-0369&rft_id=info:doi/10.1177/0142331215619976&rft_dat=%3Cproquest_cross%3E1898548129%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1898548129&rft_id=info:pmid/&rft_sage_id=10.1177_0142331215619976&rfr_iscdi=true |