ON MOMENTS OF TWISTED L-FUNCTIONS
We study the average of the product of the central values of two L-functions of modular forms f and g twisted by Dirichlet characters to a large prime modulus q. As our principal tools, we use spectral theory to develop bounds on averages of shifted convolution sums with differences ranging over mul...
Gespeichert in:
Veröffentlicht in: | American journal of mathematics 2017-06, Vol.139 (3), p.707-768 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 768 |
---|---|
container_issue | 3 |
container_start_page | 707 |
container_title | American journal of mathematics |
container_volume | 139 |
creator | Blomer, Valentin Fouvry, Étienne Kowalski, Emmanuel Michel, Philippe Milićević, Djordje |
description | We study the average of the product of the central values of two L-functions of modular forms f and g twisted by Dirichlet characters to a large prime modulus q. As our principal tools, we use spectral theory to develop bounds on averages of shifted convolution sums with differences ranging over multiples of q, and we use the theory of Deligne and Katz to prove new bounds on bilinear forms in Kloosterman sums with power savings when both variables are near the square root of q. When at least one of the forms f and g is non-cuspidal, we obtain an asymptotic formula for the mixed second moment of twisted L-functions with a power saving error term. In particular, when both are non-cuspidal, this gives a significant improvement on M. Young's asymptotic evaluation of the fourth moment of Dirichlet L-functions. In the general case, the asymptotic formula with a power saving is proved under a conjectural estimate for certain bilinear forms in Kloosterman sums. |
doi_str_mv | 10.1353/ajm.2017.0019 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1898398570</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>44508999</jstor_id><sourcerecordid>44508999</sourcerecordid><originalsourceid>FETCH-LOGICAL-c332t-75b6256b34c07e58025c6584d42e524f36ab967ba6379be1b0cf54c9afb0ade83</originalsourceid><addsrcrecordid>eNpFkM1LwzAYxoMoOKdHj0LFc-ab7-Qoc9PB1h7a4TE0WQoWZ2fTHfzvTZno6eWB5-Plh9AtgRlhgj3W7X5GgagZADFnaEJAA5ZMqXM0AQCKDaPqEl3F2CYJCugE3Rd5tik2i7wqs2KZVW-rslo8Z2u83ObzalXk5TW6aOqPGG5-7xRtl4tq_orXxctq_rTGnjE6YCWcpEI6xj2oIDRQ4aXQfMdpEJQ3TNbOSOXq9JBxgTjwjeDe1I2Dehc0m6KHU--h776OIQ627Y79Z5q0RBvNjBYKkgufXL7vYuxDYw_9-77uvy0BO1KwiYIdKdiRQvLzv9Y2-GF_jOG_WAqlpLLlSGoERRRLYLhKsbtTrI1D1_9tcC5AG2PYD-CHZDs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1898398570</pqid></control><display><type>article</type><title>ON MOMENTS OF TWISTED L-FUNCTIONS</title><source>Project Muse Premium Collection</source><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Blomer, Valentin ; Fouvry, Étienne ; Kowalski, Emmanuel ; Michel, Philippe ; Milićević, Djordje</creator><creatorcontrib>Blomer, Valentin ; Fouvry, Étienne ; Kowalski, Emmanuel ; Michel, Philippe ; Milićević, Djordje</creatorcontrib><description>We study the average of the product of the central values of two L-functions of modular forms f and g twisted by Dirichlet characters to a large prime modulus q. As our principal tools, we use spectral theory to develop bounds on averages of shifted convolution sums with differences ranging over multiples of q, and we use the theory of Deligne and Katz to prove new bounds on bilinear forms in Kloosterman sums with power savings when both variables are near the square root of q. When at least one of the forms f and g is non-cuspidal, we obtain an asymptotic formula for the mixed second moment of twisted L-functions with a power saving error term. In particular, when both are non-cuspidal, this gives a significant improvement on M. Young's asymptotic evaluation of the fourth moment of Dirichlet L-functions. In the general case, the asymptotic formula with a power saving is proved under a conjectural estimate for certain bilinear forms in Kloosterman sums.</description><identifier>ISSN: 0002-9327</identifier><identifier>ISSN: 1080-6377</identifier><identifier>EISSN: 1080-6377</identifier><identifier>DOI: 10.1353/ajm.2017.0019</identifier><language>eng</language><publisher>Baltimore: Johns Hopkins University Press</publisher><subject>Algebra ; Asymptotic properties ; Convolution ; Dirichlet problem ; Energy conservation ; Number theory ; Spectral theory ; Sums</subject><ispartof>American journal of mathematics, 2017-06, Vol.139 (3), p.707-768</ispartof><rights>Copyright © 2017 Johns Hopkins University Press</rights><rights>Copyright © The Johns Hopkins University Press.</rights><rights>Copyright Johns Hopkins University Press Jun 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c332t-75b6256b34c07e58025c6584d42e524f36ab967ba6379be1b0cf54c9afb0ade83</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/44508999$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/44508999$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,21127,27924,27925,56842,57402,58017,58021,58250,58254</link.rule.ids></links><search><creatorcontrib>Blomer, Valentin</creatorcontrib><creatorcontrib>Fouvry, Étienne</creatorcontrib><creatorcontrib>Kowalski, Emmanuel</creatorcontrib><creatorcontrib>Michel, Philippe</creatorcontrib><creatorcontrib>Milićević, Djordje</creatorcontrib><title>ON MOMENTS OF TWISTED L-FUNCTIONS</title><title>American journal of mathematics</title><description>We study the average of the product of the central values of two L-functions of modular forms f and g twisted by Dirichlet characters to a large prime modulus q. As our principal tools, we use spectral theory to develop bounds on averages of shifted convolution sums with differences ranging over multiples of q, and we use the theory of Deligne and Katz to prove new bounds on bilinear forms in Kloosterman sums with power savings when both variables are near the square root of q. When at least one of the forms f and g is non-cuspidal, we obtain an asymptotic formula for the mixed second moment of twisted L-functions with a power saving error term. In particular, when both are non-cuspidal, this gives a significant improvement on M. Young's asymptotic evaluation of the fourth moment of Dirichlet L-functions. In the general case, the asymptotic formula with a power saving is proved under a conjectural estimate for certain bilinear forms in Kloosterman sums.</description><subject>Algebra</subject><subject>Asymptotic properties</subject><subject>Convolution</subject><subject>Dirichlet problem</subject><subject>Energy conservation</subject><subject>Number theory</subject><subject>Spectral theory</subject><subject>Sums</subject><issn>0002-9327</issn><issn>1080-6377</issn><issn>1080-6377</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpFkM1LwzAYxoMoOKdHj0LFc-ab7-Qoc9PB1h7a4TE0WQoWZ2fTHfzvTZno6eWB5-Plh9AtgRlhgj3W7X5GgagZADFnaEJAA5ZMqXM0AQCKDaPqEl3F2CYJCugE3Rd5tik2i7wqs2KZVW-rslo8Z2u83ObzalXk5TW6aOqPGG5-7xRtl4tq_orXxctq_rTGnjE6YCWcpEI6xj2oIDRQ4aXQfMdpEJQ3TNbOSOXq9JBxgTjwjeDe1I2Dehc0m6KHU--h776OIQ627Y79Z5q0RBvNjBYKkgufXL7vYuxDYw_9-77uvy0BO1KwiYIdKdiRQvLzv9Y2-GF_jOG_WAqlpLLlSGoERRRLYLhKsbtTrI1D1_9tcC5AG2PYD-CHZDs</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Blomer, Valentin</creator><creator>Fouvry, Étienne</creator><creator>Kowalski, Emmanuel</creator><creator>Michel, Philippe</creator><creator>Milićević, Djordje</creator><general>Johns Hopkins University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7XB</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20170601</creationdate><title>ON MOMENTS OF TWISTED L-FUNCTIONS</title><author>Blomer, Valentin ; Fouvry, Étienne ; Kowalski, Emmanuel ; Michel, Philippe ; Milićević, Djordje</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c332t-75b6256b34c07e58025c6584d42e524f36ab967ba6379be1b0cf54c9afb0ade83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algebra</topic><topic>Asymptotic properties</topic><topic>Convolution</topic><topic>Dirichlet problem</topic><topic>Energy conservation</topic><topic>Number theory</topic><topic>Spectral theory</topic><topic>Sums</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blomer, Valentin</creatorcontrib><creatorcontrib>Fouvry, Étienne</creatorcontrib><creatorcontrib>Kowalski, Emmanuel</creatorcontrib><creatorcontrib>Michel, Philippe</creatorcontrib><creatorcontrib>Milićević, Djordje</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>American journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blomer, Valentin</au><au>Fouvry, Étienne</au><au>Kowalski, Emmanuel</au><au>Michel, Philippe</au><au>Milićević, Djordje</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ON MOMENTS OF TWISTED L-FUNCTIONS</atitle><jtitle>American journal of mathematics</jtitle><date>2017-06-01</date><risdate>2017</risdate><volume>139</volume><issue>3</issue><spage>707</spage><epage>768</epage><pages>707-768</pages><issn>0002-9327</issn><issn>1080-6377</issn><eissn>1080-6377</eissn><abstract>We study the average of the product of the central values of two L-functions of modular forms f and g twisted by Dirichlet characters to a large prime modulus q. As our principal tools, we use spectral theory to develop bounds on averages of shifted convolution sums with differences ranging over multiples of q, and we use the theory of Deligne and Katz to prove new bounds on bilinear forms in Kloosterman sums with power savings when both variables are near the square root of q. When at least one of the forms f and g is non-cuspidal, we obtain an asymptotic formula for the mixed second moment of twisted L-functions with a power saving error term. In particular, when both are non-cuspidal, this gives a significant improvement on M. Young's asymptotic evaluation of the fourth moment of Dirichlet L-functions. In the general case, the asymptotic formula with a power saving is proved under a conjectural estimate for certain bilinear forms in Kloosterman sums.</abstract><cop>Baltimore</cop><pub>Johns Hopkins University Press</pub><doi>10.1353/ajm.2017.0019</doi><tpages>62</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9327 |
ispartof | American journal of mathematics, 2017-06, Vol.139 (3), p.707-768 |
issn | 0002-9327 1080-6377 1080-6377 |
language | eng |
recordid | cdi_proquest_journals_1898398570 |
source | Project Muse Premium Collection; JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing |
subjects | Algebra Asymptotic properties Convolution Dirichlet problem Energy conservation Number theory Spectral theory Sums |
title | ON MOMENTS OF TWISTED L-FUNCTIONS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T06%3A11%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ON%20MOMENTS%20OF%20TWISTED%20L-FUNCTIONS&rft.jtitle=American%20journal%20of%20mathematics&rft.au=Blomer,%20Valentin&rft.date=2017-06-01&rft.volume=139&rft.issue=3&rft.spage=707&rft.epage=768&rft.pages=707-768&rft.issn=0002-9327&rft.eissn=1080-6377&rft_id=info:doi/10.1353/ajm.2017.0019&rft_dat=%3Cjstor_proqu%3E44508999%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1898398570&rft_id=info:pmid/&rft_jstor_id=44508999&rfr_iscdi=true |