Design of a Highly Efficient (97.7%) and Very Compact (2.2 kW/dm ^3) Isolated AC–DC Telecom Power Supply Module Based on the Multicell ISOP Converter Approach

The rising electricity demand of data centers has initiated a development trend toward highly efficient power supplies. Therefore, a multicell converter approach for a telecom rectifier module breaking through the efficiency and power density barriers of traditional single-cell converter systems is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power electronics 2017-10, Vol.32 (10), p.7750-7769
Hauptverfasser: Kasper, Matthias, Bortis, Dominik, Deboy, Gerald, Kolar, Johann W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7769
container_issue 10
container_start_page 7750
container_title IEEE transactions on power electronics
container_volume 32
creator Kasper, Matthias
Bortis, Dominik
Deboy, Gerald
Kolar, Johann W.
description The rising electricity demand of data centers has initiated a development trend toward highly efficient power supplies. Therefore, a multicell converter approach for a telecom rectifier module breaking through the efficiency and power density barriers of traditional single-cell converter systems is presented in this paper. The potential of the multicell approach for high efficiency is derived from fundamental scaling laws of different system performance aspects in dependence of the number of converter cells and the benefits of the interleaving technique. Based on the available degrees of freedom in the design of such a converter system, a comprehensive multiobjective optimization of the entire system with respect to efficiency and power density is performed with detailed component loss and volume models. In order to verify the analytical models and the design procedure, a hardware demonstrator of a 3.3 kW multicell 230 V AC /48 V DC telecom power supply with N cells = 6 isolated converter cells in an input-series output-parallel arrangement is presented with measurement results indicating a maximum efficiency of η = 97.7% and a power density of p = 2.2 kW/dm 3 (= 36 W/in 3 ). Furthermore, different paths for future performance improvements of the multicell arrangement are outlined.
doi_str_mv 10.1109/TPEL.2016.2633334
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1898381411</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7762915</ieee_id><sourcerecordid>1898381411</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-70124b5bba298bfb118a50d5b820ff0fe34176e0f6106b59cb767591f6fd4d283</originalsourceid><addsrcrecordid>eNo9kc9u00AQh1cIJELLAyAuIyEkerC7s_63e0zdQCOlaqQGuGGt7dnGxfGatQ3KjXfgBfpsfZJulIq5zGG-328OH2PvkIeIXJ1v1otVKDimoUgjP_ELNkMVY8CRZy_ZjEuZBFKp6DV7Mwz3nGOccJyxh0samrsOrAENV83dtt3Dwpimaqgb4ZPKwuzjGeiuhm_k9pDbXa8rfxChgJ_fz-sd_IjOYDnYVo9Uwzx__PvvMocNtVTZHaztH3JwO_W977229dQSXOjBk7aDcUtwPbVjU1HbwvL2Zu37u9_kRp-Z972zutqesldGtwO9fd4n7OvnxSa_ClY3X5b5fBVUQkVjkHEUcZmUpRZKlqZElDrhdVJKwY3hhqIYs5S4SZGnZaKqMkuzRKFJTR3XQkYn7MOx17_9NdEwFvd2cp1_WaBUMpIYI3oKj1Tl7DA4MkXvmp12-wJ5cRBRHEQUBxHFswifeX_MNET0n8-yVChMoiequoIc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1898381411</pqid></control><display><type>article</type><title>Design of a Highly Efficient (97.7%) and Very Compact (2.2 kW/dm ^3) Isolated AC–DC Telecom Power Supply Module Based on the Multicell ISOP Converter Approach</title><source>IEEE Electronic Library (IEL)</source><creator>Kasper, Matthias ; Bortis, Dominik ; Deboy, Gerald ; Kolar, Johann W.</creator><creatorcontrib>Kasper, Matthias ; Bortis, Dominik ; Deboy, Gerald ; Kolar, Johann W.</creatorcontrib><description>The rising electricity demand of data centers has initiated a development trend toward highly efficient power supplies. Therefore, a multicell converter approach for a telecom rectifier module breaking through the efficiency and power density barriers of traditional single-cell converter systems is presented in this paper. The potential of the multicell approach for high efficiency is derived from fundamental scaling laws of different system performance aspects in dependence of the number of converter cells and the benefits of the interleaving technique. Based on the available degrees of freedom in the design of such a converter system, a comprehensive multiobjective optimization of the entire system with respect to efficiency and power density is performed with detailed component loss and volume models. In order to verify the analytical models and the design procedure, a hardware demonstrator of a 3.3 kW multicell 230 V AC /48 V DC telecom power supply with N cells = 6 isolated converter cells in an input-series output-parallel arrangement is presented with measurement results indicating a maximum efficiency of η = 97.7% and a power density of p = 2.2 kW/dm 3 (= 36 W/in 3 ). Furthermore, different paths for future performance improvements of the multicell arrangement are outlined.</description><identifier>ISSN: 0885-8993</identifier><identifier>EISSN: 1941-0107</identifier><identifier>DOI: 10.1109/TPEL.2016.2633334</identifier><identifier>CODEN: ITPEE8</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>AC–DC power converters ; Data centers ; DC-DC power converters ; Design optimization ; digital control ; Efficiency ; Electric converters ; Electric power demand ; Electric power supplies ; Electricity consumption ; Energy conversion efficiency ; Harmonic analysis ; Inductance ; Inductors ; Mathematical models ; Multiple objective analysis ; power &lt;sc xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;mosfet s ; Power supplies ; Scaling laws ; Switching loss ; Telecommunications</subject><ispartof>IEEE transactions on power electronics, 2017-10, Vol.32 (10), p.7750-7769</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-70124b5bba298bfb118a50d5b820ff0fe34176e0f6106b59cb767591f6fd4d283</citedby><cites>FETCH-LOGICAL-c293t-70124b5bba298bfb118a50d5b820ff0fe34176e0f6106b59cb767591f6fd4d283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7762915$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7762915$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kasper, Matthias</creatorcontrib><creatorcontrib>Bortis, Dominik</creatorcontrib><creatorcontrib>Deboy, Gerald</creatorcontrib><creatorcontrib>Kolar, Johann W.</creatorcontrib><title>Design of a Highly Efficient (97.7%) and Very Compact (2.2 kW/dm ^3) Isolated AC–DC Telecom Power Supply Module Based on the Multicell ISOP Converter Approach</title><title>IEEE transactions on power electronics</title><addtitle>TPEL</addtitle><description>The rising electricity demand of data centers has initiated a development trend toward highly efficient power supplies. Therefore, a multicell converter approach for a telecom rectifier module breaking through the efficiency and power density barriers of traditional single-cell converter systems is presented in this paper. The potential of the multicell approach for high efficiency is derived from fundamental scaling laws of different system performance aspects in dependence of the number of converter cells and the benefits of the interleaving technique. Based on the available degrees of freedom in the design of such a converter system, a comprehensive multiobjective optimization of the entire system with respect to efficiency and power density is performed with detailed component loss and volume models. In order to verify the analytical models and the design procedure, a hardware demonstrator of a 3.3 kW multicell 230 V AC /48 V DC telecom power supply with N cells = 6 isolated converter cells in an input-series output-parallel arrangement is presented with measurement results indicating a maximum efficiency of η = 97.7% and a power density of p = 2.2 kW/dm 3 (= 36 W/in 3 ). Furthermore, different paths for future performance improvements of the multicell arrangement are outlined.</description><subject>AC–DC power converters</subject><subject>Data centers</subject><subject>DC-DC power converters</subject><subject>Design optimization</subject><subject>digital control</subject><subject>Efficiency</subject><subject>Electric converters</subject><subject>Electric power demand</subject><subject>Electric power supplies</subject><subject>Electricity consumption</subject><subject>Energy conversion efficiency</subject><subject>Harmonic analysis</subject><subject>Inductance</subject><subject>Inductors</subject><subject>Mathematical models</subject><subject>Multiple objective analysis</subject><subject>power &lt;sc xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;mosfet s</subject><subject>Power supplies</subject><subject>Scaling laws</subject><subject>Switching loss</subject><subject>Telecommunications</subject><issn>0885-8993</issn><issn>1941-0107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kc9u00AQh1cIJELLAyAuIyEkerC7s_63e0zdQCOlaqQGuGGt7dnGxfGatQ3KjXfgBfpsfZJulIq5zGG-328OH2PvkIeIXJ1v1otVKDimoUgjP_ELNkMVY8CRZy_ZjEuZBFKp6DV7Mwz3nGOccJyxh0samrsOrAENV83dtt3Dwpimaqgb4ZPKwuzjGeiuhm_k9pDbXa8rfxChgJ_fz-sd_IjOYDnYVo9Uwzx__PvvMocNtVTZHaztH3JwO_W977229dQSXOjBk7aDcUtwPbVjU1HbwvL2Zu37u9_kRp-Z972zutqesldGtwO9fd4n7OvnxSa_ClY3X5b5fBVUQkVjkHEUcZmUpRZKlqZElDrhdVJKwY3hhqIYs5S4SZGnZaKqMkuzRKFJTR3XQkYn7MOx17_9NdEwFvd2cp1_WaBUMpIYI3oKj1Tl7DA4MkXvmp12-wJ5cRBRHEQUBxHFswifeX_MNET0n8-yVChMoiequoIc</recordid><startdate>201710</startdate><enddate>201710</enddate><creator>Kasper, Matthias</creator><creator>Bortis, Dominik</creator><creator>Deboy, Gerald</creator><creator>Kolar, Johann W.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>201710</creationdate><title>Design of a Highly Efficient (97.7%) and Very Compact (2.2 kW/dm ^3) Isolated AC–DC Telecom Power Supply Module Based on the Multicell ISOP Converter Approach</title><author>Kasper, Matthias ; Bortis, Dominik ; Deboy, Gerald ; Kolar, Johann W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-70124b5bba298bfb118a50d5b820ff0fe34176e0f6106b59cb767591f6fd4d283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>AC–DC power converters</topic><topic>Data centers</topic><topic>DC-DC power converters</topic><topic>Design optimization</topic><topic>digital control</topic><topic>Efficiency</topic><topic>Electric converters</topic><topic>Electric power demand</topic><topic>Electric power supplies</topic><topic>Electricity consumption</topic><topic>Energy conversion efficiency</topic><topic>Harmonic analysis</topic><topic>Inductance</topic><topic>Inductors</topic><topic>Mathematical models</topic><topic>Multiple objective analysis</topic><topic>power &lt;sc xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;mosfet s</topic><topic>Power supplies</topic><topic>Scaling laws</topic><topic>Switching loss</topic><topic>Telecommunications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kasper, Matthias</creatorcontrib><creatorcontrib>Bortis, Dominik</creatorcontrib><creatorcontrib>Deboy, Gerald</creatorcontrib><creatorcontrib>Kolar, Johann W.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kasper, Matthias</au><au>Bortis, Dominik</au><au>Deboy, Gerald</au><au>Kolar, Johann W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of a Highly Efficient (97.7%) and Very Compact (2.2 kW/dm ^3) Isolated AC–DC Telecom Power Supply Module Based on the Multicell ISOP Converter Approach</atitle><jtitle>IEEE transactions on power electronics</jtitle><stitle>TPEL</stitle><date>2017-10</date><risdate>2017</risdate><volume>32</volume><issue>10</issue><spage>7750</spage><epage>7769</epage><pages>7750-7769</pages><issn>0885-8993</issn><eissn>1941-0107</eissn><coden>ITPEE8</coden><abstract>The rising electricity demand of data centers has initiated a development trend toward highly efficient power supplies. Therefore, a multicell converter approach for a telecom rectifier module breaking through the efficiency and power density barriers of traditional single-cell converter systems is presented in this paper. The potential of the multicell approach for high efficiency is derived from fundamental scaling laws of different system performance aspects in dependence of the number of converter cells and the benefits of the interleaving technique. Based on the available degrees of freedom in the design of such a converter system, a comprehensive multiobjective optimization of the entire system with respect to efficiency and power density is performed with detailed component loss and volume models. In order to verify the analytical models and the design procedure, a hardware demonstrator of a 3.3 kW multicell 230 V AC /48 V DC telecom power supply with N cells = 6 isolated converter cells in an input-series output-parallel arrangement is presented with measurement results indicating a maximum efficiency of η = 97.7% and a power density of p = 2.2 kW/dm 3 (= 36 W/in 3 ). Furthermore, different paths for future performance improvements of the multicell arrangement are outlined.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPEL.2016.2633334</doi><tpages>20</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8993
ispartof IEEE transactions on power electronics, 2017-10, Vol.32 (10), p.7750-7769
issn 0885-8993
1941-0107
language eng
recordid cdi_proquest_journals_1898381411
source IEEE Electronic Library (IEL)
subjects AC–DC power converters
Data centers
DC-DC power converters
Design optimization
digital control
Efficiency
Electric converters
Electric power demand
Electric power supplies
Electricity consumption
Energy conversion efficiency
Harmonic analysis
Inductance
Inductors
Mathematical models
Multiple objective analysis
power <sc xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">mosfet s
Power supplies
Scaling laws
Switching loss
Telecommunications
title Design of a Highly Efficient (97.7%) and Very Compact (2.2 kW/dm ^3) Isolated AC–DC Telecom Power Supply Module Based on the Multicell ISOP Converter Approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T05%3A15%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20a%20Highly%20Efficient%20(97.7%25)%20and%20Very%20Compact%20(2.2%20kW/dm%20%5E3)%20Isolated%20AC%E2%80%93DC%20Telecom%20Power%20Supply%20Module%20Based%20on%20the%20Multicell%20ISOP%20Converter%20Approach&rft.jtitle=IEEE%20transactions%20on%20power%20electronics&rft.au=Kasper,%20Matthias&rft.date=2017-10&rft.volume=32&rft.issue=10&rft.spage=7750&rft.epage=7769&rft.pages=7750-7769&rft.issn=0885-8993&rft.eissn=1941-0107&rft.coden=ITPEE8&rft_id=info:doi/10.1109/TPEL.2016.2633334&rft_dat=%3Cproquest_RIE%3E1898381411%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1898381411&rft_id=info:pmid/&rft_ieee_id=7762915&rfr_iscdi=true