Damage detection of a truss bridge utilizing a damage indicator from multivariate autoregressive model

This study proposes a damage indicator automatically derived from a set of multivariate autoregressive models estimated from ambient vibration of bridges. The damage indicator evaluates a stochastic distance between a set of reference data (healthy bridge data) and unknown test data. Statistical hyp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of civil structural health monitoring 2017-04, Vol.7 (2), p.153-162
Hauptverfasser: Goi, Yoshinao, Kim, Chul-Woo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 162
container_issue 2
container_start_page 153
container_title Journal of civil structural health monitoring
container_volume 7
creator Goi, Yoshinao
Kim, Chul-Woo
description This study proposes a damage indicator automatically derived from a set of multivariate autoregressive models estimated from ambient vibration of bridges. The damage indicator evaluates a stochastic distance between a set of reference data (healthy bridge data) and unknown test data. Statistical hypothesis testing based on a probability distribution of the damage indicator was applied for damage detection. A field experiment conducted on an actual steel truss bridge with truss members that were artificially severed was conducted to assess the damage detection efficacy of the proposed damage indicator. Experimentally obtained results showed that the proposed damage indicator enables detection of three damage patterns. The proposed damage indicator effectiveness was also assessed by comparison to the damage sensitive feature from a univariate autoregressive model using experimental data of the same bridge. This comparison also demonstrated the efficacy of the proposed damage indicator obtained from a multivariate linear system.
doi_str_mv 10.1007/s13349-017-0222-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1898073483</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1898073483</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-4619f943d1016152b2ce269245556f4b9da27ef9d2c73f133909df6084b9ab413</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWGp_gLeA59Vkkv3IUeonFLzoOWQ3yZLS3dQkW6i_3pQV8eJphnnfd4Z5ELqm5JYSUt9FyhgXBaF1QQCgOJ6hBVBBipLX4vy3L-ESrWLcEkJoA1XFYIHsgxpUb7A2yXTJ-RF7ixVOYYoRt8HprE3J7dyXG_ss6NnuRu06lXzANvgBD9MuuYMKTiWD1ZTnpg8mRncwePDa7K7QhVW7aFY_dYk-nh7f1y_F5u35dX2_KTrWQCp4RYUVnGlKaEVLaKEzUAngZVlWlrdCK6iNFRq6mtn8tSBC24o0WVItp2yJbua9--A_JxOT3PopjPmkpI1oSM14w7KLzq4u-BiDsXIf3KDCUVIiT0TlTFRmovJEVB5zBuZMzN6xN-HP5n9D3xqheZ4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1898073483</pqid></control><display><type>article</type><title>Damage detection of a truss bridge utilizing a damage indicator from multivariate autoregressive model</title><source>SpringerLink Journals - AutoHoldings</source><creator>Goi, Yoshinao ; Kim, Chul-Woo</creator><creatorcontrib>Goi, Yoshinao ; Kim, Chul-Woo</creatorcontrib><description>This study proposes a damage indicator automatically derived from a set of multivariate autoregressive models estimated from ambient vibration of bridges. The damage indicator evaluates a stochastic distance between a set of reference data (healthy bridge data) and unknown test data. Statistical hypothesis testing based on a probability distribution of the damage indicator was applied for damage detection. A field experiment conducted on an actual steel truss bridge with truss members that were artificially severed was conducted to assess the damage detection efficacy of the proposed damage indicator. Experimentally obtained results showed that the proposed damage indicator enables detection of three damage patterns. The proposed damage indicator effectiveness was also assessed by comparison to the damage sensitive feature from a univariate autoregressive model using experimental data of the same bridge. This comparison also demonstrated the efficacy of the proposed damage indicator obtained from a multivariate linear system.</description><identifier>ISSN: 2190-5452</identifier><identifier>EISSN: 2190-5479</identifier><identifier>DOI: 10.1007/s13349-017-0222-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Auto-regressive models ; Autoregressive processes ; Civil Engineering ; Control ; Damage assessment ; Damage detection ; Damage patterns ; Dynamical Systems ; Engineering ; Measurement Science and Instrumentation ; Original Paper ; Truss bridges ; Vibration</subject><ispartof>Journal of civil structural health monitoring, 2017-04, Vol.7 (2), p.153-162</ispartof><rights>Springer-Verlag Berlin Heidelberg 2017</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-4619f943d1016152b2ce269245556f4b9da27ef9d2c73f133909df6084b9ab413</citedby><cites>FETCH-LOGICAL-c382t-4619f943d1016152b2ce269245556f4b9da27ef9d2c73f133909df6084b9ab413</cites><orcidid>0000-0002-2727-6037</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13349-017-0222-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13349-017-0222-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Goi, Yoshinao</creatorcontrib><creatorcontrib>Kim, Chul-Woo</creatorcontrib><title>Damage detection of a truss bridge utilizing a damage indicator from multivariate autoregressive model</title><title>Journal of civil structural health monitoring</title><addtitle>J Civil Struct Health Monit</addtitle><description>This study proposes a damage indicator automatically derived from a set of multivariate autoregressive models estimated from ambient vibration of bridges. The damage indicator evaluates a stochastic distance between a set of reference data (healthy bridge data) and unknown test data. Statistical hypothesis testing based on a probability distribution of the damage indicator was applied for damage detection. A field experiment conducted on an actual steel truss bridge with truss members that were artificially severed was conducted to assess the damage detection efficacy of the proposed damage indicator. Experimentally obtained results showed that the proposed damage indicator enables detection of three damage patterns. The proposed damage indicator effectiveness was also assessed by comparison to the damage sensitive feature from a univariate autoregressive model using experimental data of the same bridge. This comparison also demonstrated the efficacy of the proposed damage indicator obtained from a multivariate linear system.</description><subject>Auto-regressive models</subject><subject>Autoregressive processes</subject><subject>Civil Engineering</subject><subject>Control</subject><subject>Damage assessment</subject><subject>Damage detection</subject><subject>Damage patterns</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Measurement Science and Instrumentation</subject><subject>Original Paper</subject><subject>Truss bridges</subject><subject>Vibration</subject><issn>2190-5452</issn><issn>2190-5479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWGp_gLeA59Vkkv3IUeonFLzoOWQ3yZLS3dQkW6i_3pQV8eJphnnfd4Z5ELqm5JYSUt9FyhgXBaF1QQCgOJ6hBVBBipLX4vy3L-ESrWLcEkJoA1XFYIHsgxpUb7A2yXTJ-RF7ixVOYYoRt8HprE3J7dyXG_ss6NnuRu06lXzANvgBD9MuuYMKTiWD1ZTnpg8mRncwePDa7K7QhVW7aFY_dYk-nh7f1y_F5u35dX2_KTrWQCp4RYUVnGlKaEVLaKEzUAngZVlWlrdCK6iNFRq6mtn8tSBC24o0WVItp2yJbua9--A_JxOT3PopjPmkpI1oSM14w7KLzq4u-BiDsXIf3KDCUVIiT0TlTFRmovJEVB5zBuZMzN6xN-HP5n9D3xqheZ4</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Goi, Yoshinao</creator><creator>Kim, Chul-Woo</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2727-6037</orcidid></search><sort><creationdate>20170401</creationdate><title>Damage detection of a truss bridge utilizing a damage indicator from multivariate autoregressive model</title><author>Goi, Yoshinao ; Kim, Chul-Woo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-4619f943d1016152b2ce269245556f4b9da27ef9d2c73f133909df6084b9ab413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Auto-regressive models</topic><topic>Autoregressive processes</topic><topic>Civil Engineering</topic><topic>Control</topic><topic>Damage assessment</topic><topic>Damage detection</topic><topic>Damage patterns</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Measurement Science and Instrumentation</topic><topic>Original Paper</topic><topic>Truss bridges</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goi, Yoshinao</creatorcontrib><creatorcontrib>Kim, Chul-Woo</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of civil structural health monitoring</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goi, Yoshinao</au><au>Kim, Chul-Woo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Damage detection of a truss bridge utilizing a damage indicator from multivariate autoregressive model</atitle><jtitle>Journal of civil structural health monitoring</jtitle><stitle>J Civil Struct Health Monit</stitle><date>2017-04-01</date><risdate>2017</risdate><volume>7</volume><issue>2</issue><spage>153</spage><epage>162</epage><pages>153-162</pages><issn>2190-5452</issn><eissn>2190-5479</eissn><abstract>This study proposes a damage indicator automatically derived from a set of multivariate autoregressive models estimated from ambient vibration of bridges. The damage indicator evaluates a stochastic distance between a set of reference data (healthy bridge data) and unknown test data. Statistical hypothesis testing based on a probability distribution of the damage indicator was applied for damage detection. A field experiment conducted on an actual steel truss bridge with truss members that were artificially severed was conducted to assess the damage detection efficacy of the proposed damage indicator. Experimentally obtained results showed that the proposed damage indicator enables detection of three damage patterns. The proposed damage indicator effectiveness was also assessed by comparison to the damage sensitive feature from a univariate autoregressive model using experimental data of the same bridge. This comparison also demonstrated the efficacy of the proposed damage indicator obtained from a multivariate linear system.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s13349-017-0222-y</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2727-6037</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2190-5452
ispartof Journal of civil structural health monitoring, 2017-04, Vol.7 (2), p.153-162
issn 2190-5452
2190-5479
language eng
recordid cdi_proquest_journals_1898073483
source SpringerLink Journals - AutoHoldings
subjects Auto-regressive models
Autoregressive processes
Civil Engineering
Control
Damage assessment
Damage detection
Damage patterns
Dynamical Systems
Engineering
Measurement Science and Instrumentation
Original Paper
Truss bridges
Vibration
title Damage detection of a truss bridge utilizing a damage indicator from multivariate autoregressive model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T17%3A07%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Damage%20detection%20of%20a%20truss%20bridge%20utilizing%20a%20damage%20indicator%20from%20multivariate%20autoregressive%20model&rft.jtitle=Journal%20of%20civil%20structural%20health%20monitoring&rft.au=Goi,%20Yoshinao&rft.date=2017-04-01&rft.volume=7&rft.issue=2&rft.spage=153&rft.epage=162&rft.pages=153-162&rft.issn=2190-5452&rft.eissn=2190-5479&rft_id=info:doi/10.1007/s13349-017-0222-y&rft_dat=%3Cproquest_cross%3E1898073483%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1898073483&rft_id=info:pmid/&rfr_iscdi=true