Contrasting aerosol refractive index and hygroscopicity in the inflow and outflow of deep convective storms: Analysis of airborne data from DC3

We examine three case studies during the Deep Convective Clouds and Chemistry (DC3) field experiment when storm inflow and outflow air were sampled for aerosol subsaturated hygroscopicity and the real part of refractive index (n) with a Differential Aerosol Sizing and Hygroscopicity Probe (DASH‐SP)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Atmospheres 2017-04, Vol.122 (8), p.4565-4577
Hauptverfasser: Sorooshian, Armin, Shingler, T., Crosbie, E., Barth, M. C., Homeyer, C. R., Campuzano‐Jost, P., Day, D. A., Jimenez, J. L., Thornhill, K. L., Ziemba, L. D., Blake, D. R., Fried, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4577
container_issue 8
container_start_page 4565
container_title Journal of geophysical research. Atmospheres
container_volume 122
creator Sorooshian, Armin
Shingler, T.
Crosbie, E.
Barth, M. C.
Homeyer, C. R.
Campuzano‐Jost, P.
Day, D. A.
Jimenez, J. L.
Thornhill, K. L.
Ziemba, L. D.
Blake, D. R.
Fried, A.
description We examine three case studies during the Deep Convective Clouds and Chemistry (DC3) field experiment when storm inflow and outflow air were sampled for aerosol subsaturated hygroscopicity and the real part of refractive index (n) with a Differential Aerosol Sizing and Hygroscopicity Probe (DASH‐SP) on the NASA DC‐8. Relative to inflow aerosol particles, outflow particles were more hygroscopic (by 0.03 based on the estimated κ parameter) in one of the three storms examined. Two of three “control” flights with no storm convection reveal higher κ values, albeit by only 0.02, at high altitude (> 8 km) versus < 4 km. Entrainment modeling shows that measured κ values in the outflow of the three storm flights are higher than predicted values (by 0.03–0.11) based on knowledge of κ values from the inflow and clear air adjacent to the storms. This suggests that other process(es) contributed to hygroscopicity enhancements such as secondary aerosol formation via aqueous‐phase chemistry. Values of n were higher in the outflow of two of the three storm flights, reaching as high as 1.54. More statistically significant differences were observed in control flights (no storms) where n decreased from 1.50–1.52 (< 4 km) to 1.49–1.50 (> 8 km). Chemical data show that enhanced hygroscopicity was coincident with lower organic mass fractions, higher sulfate mass fractions, and higher O:C ratios of organic aerosol. Refractive index did not correlate as well with available chemical data. Deep convection is shown to alter aerosol radiative properties, which has implications for aerosol effects on climate. Key Points Mean kappa values measured in outflows exceed those predicted by an altitude‐dependent entrainment model Refractive index is lower aloft (> 8 km versus < 4 km) in nonstorm conditions with high statistical significance, unlike on storm days with inflow and outflow data Enhanced hygroscopicity coincides with lower organic mass fraction, higher sulfate mass fraction, and higher O:C ratios of organic aerosol
doi_str_mv 10.1002/2017JD026638
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1897611235</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1897611235</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3453-261f912c1fccba6dd85bdc494403a5e5b7db6bf9b5bd0f6bcfe30e0be08c1de13</originalsourceid><addsrcrecordid>eNp9kM9Kw0AQxoMoWGpvPsCCV6u72WSTeCupVktBEAVvYf-2W9Js3N225il8ZbeNiCfnMsN8P4Zvvii6RPAGQRjfxhBl8ymMCcH5STSIESnGeVGQ0985ez-PRs6tYagc4iRNBtFXaRpvqfO6WQIqrXGmBlYqS7nXOwl0I-QnoI0Aq24ZVG5azbXvggD86qCr2uyPgNn642wUEFK2gJtmJ_srzhu7cXdg0tC6c9odGKotM7aRQFBPgbJmA6YlvojOFK2dHP30YfT2cP9aPo4Xz7OncrIY8-Abj2OCVIFijhTnjBIh8pQJnhRJAjFNZcoywQhTBQtrqAjjSmIoIZMw50hIhIfRVX-3teZjK52v1mZrgz1XoZAUQSjGaaCue4qH112IpWqt3lDbVQhWh9Srv6kHHPf4Xtey-5et5rOXaYqzDONvjUOGvg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1897611235</pqid></control><display><type>article</type><title>Contrasting aerosol refractive index and hygroscopicity in the inflow and outflow of deep convective storms: Analysis of airborne data from DC3</title><source>Access via Wiley Online Library</source><source>Wiley Online Library (Open Access Collection)</source><source>Alma/SFX Local Collection</source><creator>Sorooshian, Armin ; Shingler, T. ; Crosbie, E. ; Barth, M. C. ; Homeyer, C. R. ; Campuzano‐Jost, P. ; Day, D. A. ; Jimenez, J. L. ; Thornhill, K. L. ; Ziemba, L. D. ; Blake, D. R. ; Fried, A.</creator><creatorcontrib>Sorooshian, Armin ; Shingler, T. ; Crosbie, E. ; Barth, M. C. ; Homeyer, C. R. ; Campuzano‐Jost, P. ; Day, D. A. ; Jimenez, J. L. ; Thornhill, K. L. ; Ziemba, L. D. ; Blake, D. R. ; Fried, A.</creatorcontrib><description>We examine three case studies during the Deep Convective Clouds and Chemistry (DC3) field experiment when storm inflow and outflow air were sampled for aerosol subsaturated hygroscopicity and the real part of refractive index (n) with a Differential Aerosol Sizing and Hygroscopicity Probe (DASH‐SP) on the NASA DC‐8. Relative to inflow aerosol particles, outflow particles were more hygroscopic (by 0.03 based on the estimated κ parameter) in one of the three storms examined. Two of three “control” flights with no storm convection reveal higher κ values, albeit by only 0.02, at high altitude (&gt; 8 km) versus &lt; 4 km. Entrainment modeling shows that measured κ values in the outflow of the three storm flights are higher than predicted values (by 0.03–0.11) based on knowledge of κ values from the inflow and clear air adjacent to the storms. This suggests that other process(es) contributed to hygroscopicity enhancements such as secondary aerosol formation via aqueous‐phase chemistry. Values of n were higher in the outflow of two of the three storm flights, reaching as high as 1.54. More statistically significant differences were observed in control flights (no storms) where n decreased from 1.50–1.52 (&lt; 4 km) to 1.49–1.50 (&gt; 8 km). Chemical data show that enhanced hygroscopicity was coincident with lower organic mass fractions, higher sulfate mass fractions, and higher O:C ratios of organic aerosol. Refractive index did not correlate as well with available chemical data. Deep convection is shown to alter aerosol radiative properties, which has implications for aerosol effects on climate. Key Points Mean kappa values measured in outflows exceed those predicted by an altitude‐dependent entrainment model Refractive index is lower aloft (&gt; 8 km versus &lt; 4 km) in nonstorm conditions with high statistical significance, unlike on storm days with inflow and outflow data Enhanced hygroscopicity coincides with lower organic mass fraction, higher sulfate mass fraction, and higher O:C ratios of organic aerosol</description><identifier>ISSN: 2169-897X</identifier><identifier>EISSN: 2169-8996</identifier><identifier>DOI: 10.1002/2017JD026638</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>aerosol ; Aerosol effects ; Aerosol effects on climate ; Aerosol formation ; Aerosol particles ; Aerosols ; Altitude ; Climate effects ; cloud processing ; Convection ; Convective clouds ; Convective storms ; DC3 ; Entrainment ; Geophysics ; High altitude ; Hygroscopicity ; Inflow ; Mass ; Outflow ; Ratios ; Refractive index ; Refractivity ; Secondary aerosols ; Statistical analysis ; Storms ; Sulfates</subject><ispartof>Journal of geophysical research. Atmospheres, 2017-04, Vol.122 (8), p.4565-4577</ispartof><rights>2017. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3453-261f912c1fccba6dd85bdc494403a5e5b7db6bf9b5bd0f6bcfe30e0be08c1de13</citedby><cites>FETCH-LOGICAL-c3453-261f912c1fccba6dd85bdc494403a5e5b7db6bf9b5bd0f6bcfe30e0be08c1de13</cites><orcidid>0000-0002-8920-4346 ; 0000-0003-3930-010X ; 0000-0002-8895-8066 ; 0000-0003-3213-4233 ; 0000-0001-6203-1847 ; 0000-0002-4883-6670 ; 0000-0002-5230-3527 ; 0000-0002-4787-2688 ; 0000-0002-9252-0286 ; 0000-0002-2243-2264</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2017JD026638$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2017JD026638$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids></links><search><creatorcontrib>Sorooshian, Armin</creatorcontrib><creatorcontrib>Shingler, T.</creatorcontrib><creatorcontrib>Crosbie, E.</creatorcontrib><creatorcontrib>Barth, M. C.</creatorcontrib><creatorcontrib>Homeyer, C. R.</creatorcontrib><creatorcontrib>Campuzano‐Jost, P.</creatorcontrib><creatorcontrib>Day, D. A.</creatorcontrib><creatorcontrib>Jimenez, J. L.</creatorcontrib><creatorcontrib>Thornhill, K. L.</creatorcontrib><creatorcontrib>Ziemba, L. D.</creatorcontrib><creatorcontrib>Blake, D. R.</creatorcontrib><creatorcontrib>Fried, A.</creatorcontrib><title>Contrasting aerosol refractive index and hygroscopicity in the inflow and outflow of deep convective storms: Analysis of airborne data from DC3</title><title>Journal of geophysical research. Atmospheres</title><description>We examine three case studies during the Deep Convective Clouds and Chemistry (DC3) field experiment when storm inflow and outflow air were sampled for aerosol subsaturated hygroscopicity and the real part of refractive index (n) with a Differential Aerosol Sizing and Hygroscopicity Probe (DASH‐SP) on the NASA DC‐8. Relative to inflow aerosol particles, outflow particles were more hygroscopic (by 0.03 based on the estimated κ parameter) in one of the three storms examined. Two of three “control” flights with no storm convection reveal higher κ values, albeit by only 0.02, at high altitude (&gt; 8 km) versus &lt; 4 km. Entrainment modeling shows that measured κ values in the outflow of the three storm flights are higher than predicted values (by 0.03–0.11) based on knowledge of κ values from the inflow and clear air adjacent to the storms. This suggests that other process(es) contributed to hygroscopicity enhancements such as secondary aerosol formation via aqueous‐phase chemistry. Values of n were higher in the outflow of two of the three storm flights, reaching as high as 1.54. More statistically significant differences were observed in control flights (no storms) where n decreased from 1.50–1.52 (&lt; 4 km) to 1.49–1.50 (&gt; 8 km). Chemical data show that enhanced hygroscopicity was coincident with lower organic mass fractions, higher sulfate mass fractions, and higher O:C ratios of organic aerosol. Refractive index did not correlate as well with available chemical data. Deep convection is shown to alter aerosol radiative properties, which has implications for aerosol effects on climate. Key Points Mean kappa values measured in outflows exceed those predicted by an altitude‐dependent entrainment model Refractive index is lower aloft (&gt; 8 km versus &lt; 4 km) in nonstorm conditions with high statistical significance, unlike on storm days with inflow and outflow data Enhanced hygroscopicity coincides with lower organic mass fraction, higher sulfate mass fraction, and higher O:C ratios of organic aerosol</description><subject>aerosol</subject><subject>Aerosol effects</subject><subject>Aerosol effects on climate</subject><subject>Aerosol formation</subject><subject>Aerosol particles</subject><subject>Aerosols</subject><subject>Altitude</subject><subject>Climate effects</subject><subject>cloud processing</subject><subject>Convection</subject><subject>Convective clouds</subject><subject>Convective storms</subject><subject>DC3</subject><subject>Entrainment</subject><subject>Geophysics</subject><subject>High altitude</subject><subject>Hygroscopicity</subject><subject>Inflow</subject><subject>Mass</subject><subject>Outflow</subject><subject>Ratios</subject><subject>Refractive index</subject><subject>Refractivity</subject><subject>Secondary aerosols</subject><subject>Statistical analysis</subject><subject>Storms</subject><subject>Sulfates</subject><issn>2169-897X</issn><issn>2169-8996</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kM9Kw0AQxoMoWGpvPsCCV6u72WSTeCupVktBEAVvYf-2W9Js3N225il8ZbeNiCfnMsN8P4Zvvii6RPAGQRjfxhBl8ymMCcH5STSIESnGeVGQ0985ez-PRs6tYagc4iRNBtFXaRpvqfO6WQIqrXGmBlYqS7nXOwl0I-QnoI0Aq24ZVG5azbXvggD86qCr2uyPgNn642wUEFK2gJtmJ_srzhu7cXdg0tC6c9odGKotM7aRQFBPgbJmA6YlvojOFK2dHP30YfT2cP9aPo4Xz7OncrIY8-Abj2OCVIFijhTnjBIh8pQJnhRJAjFNZcoywQhTBQtrqAjjSmIoIZMw50hIhIfRVX-3teZjK52v1mZrgz1XoZAUQSjGaaCue4qH112IpWqt3lDbVQhWh9Srv6kHHPf4Xtey-5et5rOXaYqzDONvjUOGvg</recordid><startdate>20170427</startdate><enddate>20170427</enddate><creator>Sorooshian, Armin</creator><creator>Shingler, T.</creator><creator>Crosbie, E.</creator><creator>Barth, M. C.</creator><creator>Homeyer, C. R.</creator><creator>Campuzano‐Jost, P.</creator><creator>Day, D. A.</creator><creator>Jimenez, J. L.</creator><creator>Thornhill, K. L.</creator><creator>Ziemba, L. D.</creator><creator>Blake, D. R.</creator><creator>Fried, A.</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8920-4346</orcidid><orcidid>https://orcid.org/0000-0003-3930-010X</orcidid><orcidid>https://orcid.org/0000-0002-8895-8066</orcidid><orcidid>https://orcid.org/0000-0003-3213-4233</orcidid><orcidid>https://orcid.org/0000-0001-6203-1847</orcidid><orcidid>https://orcid.org/0000-0002-4883-6670</orcidid><orcidid>https://orcid.org/0000-0002-5230-3527</orcidid><orcidid>https://orcid.org/0000-0002-4787-2688</orcidid><orcidid>https://orcid.org/0000-0002-9252-0286</orcidid><orcidid>https://orcid.org/0000-0002-2243-2264</orcidid></search><sort><creationdate>20170427</creationdate><title>Contrasting aerosol refractive index and hygroscopicity in the inflow and outflow of deep convective storms: Analysis of airborne data from DC3</title><author>Sorooshian, Armin ; Shingler, T. ; Crosbie, E. ; Barth, M. C. ; Homeyer, C. R. ; Campuzano‐Jost, P. ; Day, D. A. ; Jimenez, J. L. ; Thornhill, K. L. ; Ziemba, L. D. ; Blake, D. R. ; Fried, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3453-261f912c1fccba6dd85bdc494403a5e5b7db6bf9b5bd0f6bcfe30e0be08c1de13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>aerosol</topic><topic>Aerosol effects</topic><topic>Aerosol effects on climate</topic><topic>Aerosol formation</topic><topic>Aerosol particles</topic><topic>Aerosols</topic><topic>Altitude</topic><topic>Climate effects</topic><topic>cloud processing</topic><topic>Convection</topic><topic>Convective clouds</topic><topic>Convective storms</topic><topic>DC3</topic><topic>Entrainment</topic><topic>Geophysics</topic><topic>High altitude</topic><topic>Hygroscopicity</topic><topic>Inflow</topic><topic>Mass</topic><topic>Outflow</topic><topic>Ratios</topic><topic>Refractive index</topic><topic>Refractivity</topic><topic>Secondary aerosols</topic><topic>Statistical analysis</topic><topic>Storms</topic><topic>Sulfates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sorooshian, Armin</creatorcontrib><creatorcontrib>Shingler, T.</creatorcontrib><creatorcontrib>Crosbie, E.</creatorcontrib><creatorcontrib>Barth, M. C.</creatorcontrib><creatorcontrib>Homeyer, C. R.</creatorcontrib><creatorcontrib>Campuzano‐Jost, P.</creatorcontrib><creatorcontrib>Day, D. A.</creatorcontrib><creatorcontrib>Jimenez, J. L.</creatorcontrib><creatorcontrib>Thornhill, K. L.</creatorcontrib><creatorcontrib>Ziemba, L. D.</creatorcontrib><creatorcontrib>Blake, D. R.</creatorcontrib><creatorcontrib>Fried, A.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of geophysical research. Atmospheres</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sorooshian, Armin</au><au>Shingler, T.</au><au>Crosbie, E.</au><au>Barth, M. C.</au><au>Homeyer, C. R.</au><au>Campuzano‐Jost, P.</au><au>Day, D. A.</au><au>Jimenez, J. L.</au><au>Thornhill, K. L.</au><au>Ziemba, L. D.</au><au>Blake, D. R.</au><au>Fried, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Contrasting aerosol refractive index and hygroscopicity in the inflow and outflow of deep convective storms: Analysis of airborne data from DC3</atitle><jtitle>Journal of geophysical research. Atmospheres</jtitle><date>2017-04-27</date><risdate>2017</risdate><volume>122</volume><issue>8</issue><spage>4565</spage><epage>4577</epage><pages>4565-4577</pages><issn>2169-897X</issn><eissn>2169-8996</eissn><abstract>We examine three case studies during the Deep Convective Clouds and Chemistry (DC3) field experiment when storm inflow and outflow air were sampled for aerosol subsaturated hygroscopicity and the real part of refractive index (n) with a Differential Aerosol Sizing and Hygroscopicity Probe (DASH‐SP) on the NASA DC‐8. Relative to inflow aerosol particles, outflow particles were more hygroscopic (by 0.03 based on the estimated κ parameter) in one of the three storms examined. Two of three “control” flights with no storm convection reveal higher κ values, albeit by only 0.02, at high altitude (&gt; 8 km) versus &lt; 4 km. Entrainment modeling shows that measured κ values in the outflow of the three storm flights are higher than predicted values (by 0.03–0.11) based on knowledge of κ values from the inflow and clear air adjacent to the storms. This suggests that other process(es) contributed to hygroscopicity enhancements such as secondary aerosol formation via aqueous‐phase chemistry. Values of n were higher in the outflow of two of the three storm flights, reaching as high as 1.54. More statistically significant differences were observed in control flights (no storms) where n decreased from 1.50–1.52 (&lt; 4 km) to 1.49–1.50 (&gt; 8 km). Chemical data show that enhanced hygroscopicity was coincident with lower organic mass fractions, higher sulfate mass fractions, and higher O:C ratios of organic aerosol. Refractive index did not correlate as well with available chemical data. Deep convection is shown to alter aerosol radiative properties, which has implications for aerosol effects on climate. Key Points Mean kappa values measured in outflows exceed those predicted by an altitude‐dependent entrainment model Refractive index is lower aloft (&gt; 8 km versus &lt; 4 km) in nonstorm conditions with high statistical significance, unlike on storm days with inflow and outflow data Enhanced hygroscopicity coincides with lower organic mass fraction, higher sulfate mass fraction, and higher O:C ratios of organic aerosol</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2017JD026638</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8920-4346</orcidid><orcidid>https://orcid.org/0000-0003-3930-010X</orcidid><orcidid>https://orcid.org/0000-0002-8895-8066</orcidid><orcidid>https://orcid.org/0000-0003-3213-4233</orcidid><orcidid>https://orcid.org/0000-0001-6203-1847</orcidid><orcidid>https://orcid.org/0000-0002-4883-6670</orcidid><orcidid>https://orcid.org/0000-0002-5230-3527</orcidid><orcidid>https://orcid.org/0000-0002-4787-2688</orcidid><orcidid>https://orcid.org/0000-0002-9252-0286</orcidid><orcidid>https://orcid.org/0000-0002-2243-2264</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-897X
ispartof Journal of geophysical research. Atmospheres, 2017-04, Vol.122 (8), p.4565-4577
issn 2169-897X
2169-8996
language eng
recordid cdi_proquest_journals_1897611235
source Access via Wiley Online Library; Wiley Online Library (Open Access Collection); Alma/SFX Local Collection
subjects aerosol
Aerosol effects
Aerosol effects on climate
Aerosol formation
Aerosol particles
Aerosols
Altitude
Climate effects
cloud processing
Convection
Convective clouds
Convective storms
DC3
Entrainment
Geophysics
High altitude
Hygroscopicity
Inflow
Mass
Outflow
Ratios
Refractive index
Refractivity
Secondary aerosols
Statistical analysis
Storms
Sulfates
title Contrasting aerosol refractive index and hygroscopicity in the inflow and outflow of deep convective storms: Analysis of airborne data from DC3
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T10%3A48%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Contrasting%20aerosol%20refractive%20index%20and%20hygroscopicity%20in%20the%20inflow%20and%20outflow%20of%20deep%20convective%20storms:%20Analysis%20of%20airborne%20data%20from%20DC3&rft.jtitle=Journal%20of%20geophysical%20research.%20Atmospheres&rft.au=Sorooshian,%20Armin&rft.date=2017-04-27&rft.volume=122&rft.issue=8&rft.spage=4565&rft.epage=4577&rft.pages=4565-4577&rft.issn=2169-897X&rft.eissn=2169-8996&rft_id=info:doi/10.1002/2017JD026638&rft_dat=%3Cproquest_cross%3E1897611235%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1897611235&rft_id=info:pmid/&rfr_iscdi=true