Forecasting Financial Time Series with Grammar‐Guided Feature Generation
The application of machine learning techniques to forecast financial time series is not a recent development, yet it continues to attract considerable attention because of the difficulty of the problem that is compounded by the nonlinear and nonstationary nature of the time series. The choice of an...
Gespeichert in:
Veröffentlicht in: | Computational intelligence 2017-05, Vol.33 (2), p.241-261 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 261 |
---|---|
container_issue | 2 |
container_start_page | 241 |
container_title | Computational intelligence |
container_volume | 33 |
creator | Silva, Anthony Mihirana Davis, Richard I. A. Pasha, Syed A. Leong, Philip H. W. |
description | The application of machine learning techniques to forecast financial time series is not a recent development, yet it continues to attract considerable attention because of the difficulty of the problem that is compounded by the nonlinear and nonstationary nature of the time series. The choice of an appropriate set of features is crucial to improve forecasting accuracy of machine learning techniques. In this article, we propose a systematic way for generating rich features using context‐free grammars. Our proposed methodology identifies potential candidates for new technical indicators that consistently improve forecasts compared with some well‐known indicators. The notion of grammar families as a compact representation to generate a rich class of features is exploited, and implementation issues are discussed in detail. The proposed methodology is tested on closing price data of major stock market indices, and the forecasting performance is compared with some standard techniques. A comparison with the conventional approach using standard technical indicators and naive approaches is shown. |
doi_str_mv | 10.1111/coin.12083 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1897309663</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1897309663</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3443-d16ade4b2c67ad0710ab28fa8720c6a8849a1ea5eb8646064bfcee351cc089673</originalsourceid><addsrcrecordid>eNp9kL9OwzAQhy0EEqWw8ASR2JBS7Ni1nRFVJBRVdKDM1sW5gKs2KXaiqhuPwDPyJKSEmVtu-X735yPkmtEJ6-vONq6esIRqfkJGTEgVaynoKRlRnYhYpXx6Ti5CWFNKGRd6RJ6yxqOF0Lr6LcpcDbV1sIlWbovRC3qHIdq79j3KPWy34L8_v_LOlVhGGULbeYxyrNFD65r6kpxVsAl49dfH5DV7WM0e48Uyn8_uF7HlQvC4ZBJKFEVipYKSKkahSHQFWiXUStBapMAQplj0p0sqRVFZRD5l1lKdSsXH5GaYu_PNR4ehNeum83W_0jCdKk5TKXlP3Q6U9U0IHiuz867_4GAYNUdX5ujK_LrqYTbAe7fBwz-kmS3nz0PmByBQbKI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1897309663</pqid></control><display><type>article</type><title>Forecasting Financial Time Series with Grammar‐Guided Feature Generation</title><source>Wiley Online Library Journals Frontfile Complete</source><source>EBSCOhost Business Source Complete</source><creator>Silva, Anthony Mihirana ; Davis, Richard I. A. ; Pasha, Syed A. ; Leong, Philip H. W.</creator><creatorcontrib>Silva, Anthony Mihirana ; Davis, Richard I. A. ; Pasha, Syed A. ; Leong, Philip H. W.</creatorcontrib><description>The application of machine learning techniques to forecast financial time series is not a recent development, yet it continues to attract considerable attention because of the difficulty of the problem that is compounded by the nonlinear and nonstationary nature of the time series. The choice of an appropriate set of features is crucial to improve forecasting accuracy of machine learning techniques. In this article, we propose a systematic way for generating rich features using context‐free grammars. Our proposed methodology identifies potential candidates for new technical indicators that consistently improve forecasts compared with some well‐known indicators. The notion of grammar families as a compact representation to generate a rich class of features is exploited, and implementation issues are discussed in detail. The proposed methodology is tested on closing price data of major stock market indices, and the forecasting performance is compared with some standard techniques. A comparison with the conventional approach using standard technical indicators and naive approaches is shown.</description><identifier>ISSN: 0824-7935</identifier><identifier>EISSN: 1467-8640</identifier><identifier>DOI: 10.1111/coin.12083</identifier><language>eng</language><publisher>Hoboken: Blackwell Publishing Ltd</publisher><subject>Artificial intelligence ; context‐free grammar ; Economic forecasting ; feature generation ; financial time series ; Grammars ; Indicators ; Machine learning ; Markets ; Neural networks ; Raw materials ; Time series ; time‐series forecasting</subject><ispartof>Computational intelligence, 2017-05, Vol.33 (2), p.241-261</ispartof><rights>2016 Wiley Periodicals, Inc.</rights><rights>2017 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3443-d16ade4b2c67ad0710ab28fa8720c6a8849a1ea5eb8646064bfcee351cc089673</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fcoin.12083$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fcoin.12083$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27907,27908,45557,45558</link.rule.ids></links><search><creatorcontrib>Silva, Anthony Mihirana</creatorcontrib><creatorcontrib>Davis, Richard I. A.</creatorcontrib><creatorcontrib>Pasha, Syed A.</creatorcontrib><creatorcontrib>Leong, Philip H. W.</creatorcontrib><title>Forecasting Financial Time Series with Grammar‐Guided Feature Generation</title><title>Computational intelligence</title><description>The application of machine learning techniques to forecast financial time series is not a recent development, yet it continues to attract considerable attention because of the difficulty of the problem that is compounded by the nonlinear and nonstationary nature of the time series. The choice of an appropriate set of features is crucial to improve forecasting accuracy of machine learning techniques. In this article, we propose a systematic way for generating rich features using context‐free grammars. Our proposed methodology identifies potential candidates for new technical indicators that consistently improve forecasts compared with some well‐known indicators. The notion of grammar families as a compact representation to generate a rich class of features is exploited, and implementation issues are discussed in detail. The proposed methodology is tested on closing price data of major stock market indices, and the forecasting performance is compared with some standard techniques. A comparison with the conventional approach using standard technical indicators and naive approaches is shown.</description><subject>Artificial intelligence</subject><subject>context‐free grammar</subject><subject>Economic forecasting</subject><subject>feature generation</subject><subject>financial time series</subject><subject>Grammars</subject><subject>Indicators</subject><subject>Machine learning</subject><subject>Markets</subject><subject>Neural networks</subject><subject>Raw materials</subject><subject>Time series</subject><subject>time‐series forecasting</subject><issn>0824-7935</issn><issn>1467-8640</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kL9OwzAQhy0EEqWw8ASR2JBS7Ni1nRFVJBRVdKDM1sW5gKs2KXaiqhuPwDPyJKSEmVtu-X735yPkmtEJ6-vONq6esIRqfkJGTEgVaynoKRlRnYhYpXx6Ti5CWFNKGRd6RJ6yxqOF0Lr6LcpcDbV1sIlWbovRC3qHIdq79j3KPWy34L8_v_LOlVhGGULbeYxyrNFD65r6kpxVsAl49dfH5DV7WM0e48Uyn8_uF7HlQvC4ZBJKFEVipYKSKkahSHQFWiXUStBapMAQplj0p0sqRVFZRD5l1lKdSsXH5GaYu_PNR4ehNeum83W_0jCdKk5TKXlP3Q6U9U0IHiuz867_4GAYNUdX5ujK_LrqYTbAe7fBwz-kmS3nz0PmByBQbKI</recordid><startdate>201705</startdate><enddate>201705</enddate><creator>Silva, Anthony Mihirana</creator><creator>Davis, Richard I. A.</creator><creator>Pasha, Syed A.</creator><creator>Leong, Philip H. W.</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201705</creationdate><title>Forecasting Financial Time Series with Grammar‐Guided Feature Generation</title><author>Silva, Anthony Mihirana ; Davis, Richard I. A. ; Pasha, Syed A. ; Leong, Philip H. W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3443-d16ade4b2c67ad0710ab28fa8720c6a8849a1ea5eb8646064bfcee351cc089673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Artificial intelligence</topic><topic>context‐free grammar</topic><topic>Economic forecasting</topic><topic>feature generation</topic><topic>financial time series</topic><topic>Grammars</topic><topic>Indicators</topic><topic>Machine learning</topic><topic>Markets</topic><topic>Neural networks</topic><topic>Raw materials</topic><topic>Time series</topic><topic>time‐series forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Silva, Anthony Mihirana</creatorcontrib><creatorcontrib>Davis, Richard I. A.</creatorcontrib><creatorcontrib>Pasha, Syed A.</creatorcontrib><creatorcontrib>Leong, Philip H. W.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computational intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Silva, Anthony Mihirana</au><au>Davis, Richard I. A.</au><au>Pasha, Syed A.</au><au>Leong, Philip H. W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Forecasting Financial Time Series with Grammar‐Guided Feature Generation</atitle><jtitle>Computational intelligence</jtitle><date>2017-05</date><risdate>2017</risdate><volume>33</volume><issue>2</issue><spage>241</spage><epage>261</epage><pages>241-261</pages><issn>0824-7935</issn><eissn>1467-8640</eissn><abstract>The application of machine learning techniques to forecast financial time series is not a recent development, yet it continues to attract considerable attention because of the difficulty of the problem that is compounded by the nonlinear and nonstationary nature of the time series. The choice of an appropriate set of features is crucial to improve forecasting accuracy of machine learning techniques. In this article, we propose a systematic way for generating rich features using context‐free grammars. Our proposed methodology identifies potential candidates for new technical indicators that consistently improve forecasts compared with some well‐known indicators. The notion of grammar families as a compact representation to generate a rich class of features is exploited, and implementation issues are discussed in detail. The proposed methodology is tested on closing price data of major stock market indices, and the forecasting performance is compared with some standard techniques. A comparison with the conventional approach using standard technical indicators and naive approaches is shown.</abstract><cop>Hoboken</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/coin.12083</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0824-7935 |
ispartof | Computational intelligence, 2017-05, Vol.33 (2), p.241-261 |
issn | 0824-7935 1467-8640 |
language | eng |
recordid | cdi_proquest_journals_1897309663 |
source | Wiley Online Library Journals Frontfile Complete; EBSCOhost Business Source Complete |
subjects | Artificial intelligence context‐free grammar Economic forecasting feature generation financial time series Grammars Indicators Machine learning Markets Neural networks Raw materials Time series time‐series forecasting |
title | Forecasting Financial Time Series with Grammar‐Guided Feature Generation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T11%3A42%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Forecasting%20Financial%20Time%20Series%20with%20Grammar%E2%80%90Guided%20Feature%20Generation&rft.jtitle=Computational%20intelligence&rft.au=Silva,%20Anthony%20Mihirana&rft.date=2017-05&rft.volume=33&rft.issue=2&rft.spage=241&rft.epage=261&rft.pages=241-261&rft.issn=0824-7935&rft.eissn=1467-8640&rft_id=info:doi/10.1111/coin.12083&rft_dat=%3Cproquest_cross%3E1897309663%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1897309663&rft_id=info:pmid/&rfr_iscdi=true |