Forecasting Financial Time Series with Grammar‐Guided Feature Generation

The application of machine learning techniques to forecast financial time series is not a recent development, yet it continues to attract considerable attention because of the difficulty of the problem that is compounded by the nonlinear and nonstationary nature of the time series. The choice of an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational intelligence 2017-05, Vol.33 (2), p.241-261
Hauptverfasser: Silva, Anthony Mihirana, Davis, Richard I. A., Pasha, Syed A., Leong, Philip H. W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 261
container_issue 2
container_start_page 241
container_title Computational intelligence
container_volume 33
creator Silva, Anthony Mihirana
Davis, Richard I. A.
Pasha, Syed A.
Leong, Philip H. W.
description The application of machine learning techniques to forecast financial time series is not a recent development, yet it continues to attract considerable attention because of the difficulty of the problem that is compounded by the nonlinear and nonstationary nature of the time series. The choice of an appropriate set of features is crucial to improve forecasting accuracy of machine learning techniques. In this article, we propose a systematic way for generating rich features using context‐free grammars. Our proposed methodology identifies potential candidates for new technical indicators that consistently improve forecasts compared with some well‐known indicators. The notion of grammar families as a compact representation to generate a rich class of features is exploited, and implementation issues are discussed in detail. The proposed methodology is tested on closing price data of major stock market indices, and the forecasting performance is compared with some standard techniques. A comparison with the conventional approach using standard technical indicators and naive approaches is shown.
doi_str_mv 10.1111/coin.12083
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1897309663</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1897309663</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3443-d16ade4b2c67ad0710ab28fa8720c6a8849a1ea5eb8646064bfcee351cc089673</originalsourceid><addsrcrecordid>eNp9kL9OwzAQhy0EEqWw8ASR2JBS7Ni1nRFVJBRVdKDM1sW5gKs2KXaiqhuPwDPyJKSEmVtu-X735yPkmtEJ6-vONq6esIRqfkJGTEgVaynoKRlRnYhYpXx6Ti5CWFNKGRd6RJ6yxqOF0Lr6LcpcDbV1sIlWbovRC3qHIdq79j3KPWy34L8_v_LOlVhGGULbeYxyrNFD65r6kpxVsAl49dfH5DV7WM0e48Uyn8_uF7HlQvC4ZBJKFEVipYKSKkahSHQFWiXUStBapMAQplj0p0sqRVFZRD5l1lKdSsXH5GaYu_PNR4ehNeum83W_0jCdKk5TKXlP3Q6U9U0IHiuz867_4GAYNUdX5ujK_LrqYTbAe7fBwz-kmS3nz0PmByBQbKI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1897309663</pqid></control><display><type>article</type><title>Forecasting Financial Time Series with Grammar‐Guided Feature Generation</title><source>Wiley Online Library Journals Frontfile Complete</source><source>EBSCOhost Business Source Complete</source><creator>Silva, Anthony Mihirana ; Davis, Richard I. A. ; Pasha, Syed A. ; Leong, Philip H. W.</creator><creatorcontrib>Silva, Anthony Mihirana ; Davis, Richard I. A. ; Pasha, Syed A. ; Leong, Philip H. W.</creatorcontrib><description>The application of machine learning techniques to forecast financial time series is not a recent development, yet it continues to attract considerable attention because of the difficulty of the problem that is compounded by the nonlinear and nonstationary nature of the time series. The choice of an appropriate set of features is crucial to improve forecasting accuracy of machine learning techniques. In this article, we propose a systematic way for generating rich features using context‐free grammars. Our proposed methodology identifies potential candidates for new technical indicators that consistently improve forecasts compared with some well‐known indicators. The notion of grammar families as a compact representation to generate a rich class of features is exploited, and implementation issues are discussed in detail. The proposed methodology is tested on closing price data of major stock market indices, and the forecasting performance is compared with some standard techniques. A comparison with the conventional approach using standard technical indicators and naive approaches is shown.</description><identifier>ISSN: 0824-7935</identifier><identifier>EISSN: 1467-8640</identifier><identifier>DOI: 10.1111/coin.12083</identifier><language>eng</language><publisher>Hoboken: Blackwell Publishing Ltd</publisher><subject>Artificial intelligence ; context‐free grammar ; Economic forecasting ; feature generation ; financial time series ; Grammars ; Indicators ; Machine learning ; Markets ; Neural networks ; Raw materials ; Time series ; time‐series forecasting</subject><ispartof>Computational intelligence, 2017-05, Vol.33 (2), p.241-261</ispartof><rights>2016 Wiley Periodicals, Inc.</rights><rights>2017 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3443-d16ade4b2c67ad0710ab28fa8720c6a8849a1ea5eb8646064bfcee351cc089673</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fcoin.12083$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fcoin.12083$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27907,27908,45557,45558</link.rule.ids></links><search><creatorcontrib>Silva, Anthony Mihirana</creatorcontrib><creatorcontrib>Davis, Richard I. A.</creatorcontrib><creatorcontrib>Pasha, Syed A.</creatorcontrib><creatorcontrib>Leong, Philip H. W.</creatorcontrib><title>Forecasting Financial Time Series with Grammar‐Guided Feature Generation</title><title>Computational intelligence</title><description>The application of machine learning techniques to forecast financial time series is not a recent development, yet it continues to attract considerable attention because of the difficulty of the problem that is compounded by the nonlinear and nonstationary nature of the time series. The choice of an appropriate set of features is crucial to improve forecasting accuracy of machine learning techniques. In this article, we propose a systematic way for generating rich features using context‐free grammars. Our proposed methodology identifies potential candidates for new technical indicators that consistently improve forecasts compared with some well‐known indicators. The notion of grammar families as a compact representation to generate a rich class of features is exploited, and implementation issues are discussed in detail. The proposed methodology is tested on closing price data of major stock market indices, and the forecasting performance is compared with some standard techniques. A comparison with the conventional approach using standard technical indicators and naive approaches is shown.</description><subject>Artificial intelligence</subject><subject>context‐free grammar</subject><subject>Economic forecasting</subject><subject>feature generation</subject><subject>financial time series</subject><subject>Grammars</subject><subject>Indicators</subject><subject>Machine learning</subject><subject>Markets</subject><subject>Neural networks</subject><subject>Raw materials</subject><subject>Time series</subject><subject>time‐series forecasting</subject><issn>0824-7935</issn><issn>1467-8640</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kL9OwzAQhy0EEqWw8ASR2JBS7Ni1nRFVJBRVdKDM1sW5gKs2KXaiqhuPwDPyJKSEmVtu-X735yPkmtEJ6-vONq6esIRqfkJGTEgVaynoKRlRnYhYpXx6Ti5CWFNKGRd6RJ6yxqOF0Lr6LcpcDbV1sIlWbovRC3qHIdq79j3KPWy34L8_v_LOlVhGGULbeYxyrNFD65r6kpxVsAl49dfH5DV7WM0e48Uyn8_uF7HlQvC4ZBJKFEVipYKSKkahSHQFWiXUStBapMAQplj0p0sqRVFZRD5l1lKdSsXH5GaYu_PNR4ehNeum83W_0jCdKk5TKXlP3Q6U9U0IHiuz867_4GAYNUdX5ujK_LrqYTbAe7fBwz-kmS3nz0PmByBQbKI</recordid><startdate>201705</startdate><enddate>201705</enddate><creator>Silva, Anthony Mihirana</creator><creator>Davis, Richard I. A.</creator><creator>Pasha, Syed A.</creator><creator>Leong, Philip H. W.</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201705</creationdate><title>Forecasting Financial Time Series with Grammar‐Guided Feature Generation</title><author>Silva, Anthony Mihirana ; Davis, Richard I. A. ; Pasha, Syed A. ; Leong, Philip H. W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3443-d16ade4b2c67ad0710ab28fa8720c6a8849a1ea5eb8646064bfcee351cc089673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Artificial intelligence</topic><topic>context‐free grammar</topic><topic>Economic forecasting</topic><topic>feature generation</topic><topic>financial time series</topic><topic>Grammars</topic><topic>Indicators</topic><topic>Machine learning</topic><topic>Markets</topic><topic>Neural networks</topic><topic>Raw materials</topic><topic>Time series</topic><topic>time‐series forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Silva, Anthony Mihirana</creatorcontrib><creatorcontrib>Davis, Richard I. A.</creatorcontrib><creatorcontrib>Pasha, Syed A.</creatorcontrib><creatorcontrib>Leong, Philip H. W.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computational intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Silva, Anthony Mihirana</au><au>Davis, Richard I. A.</au><au>Pasha, Syed A.</au><au>Leong, Philip H. W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Forecasting Financial Time Series with Grammar‐Guided Feature Generation</atitle><jtitle>Computational intelligence</jtitle><date>2017-05</date><risdate>2017</risdate><volume>33</volume><issue>2</issue><spage>241</spage><epage>261</epage><pages>241-261</pages><issn>0824-7935</issn><eissn>1467-8640</eissn><abstract>The application of machine learning techniques to forecast financial time series is not a recent development, yet it continues to attract considerable attention because of the difficulty of the problem that is compounded by the nonlinear and nonstationary nature of the time series. The choice of an appropriate set of features is crucial to improve forecasting accuracy of machine learning techniques. In this article, we propose a systematic way for generating rich features using context‐free grammars. Our proposed methodology identifies potential candidates for new technical indicators that consistently improve forecasts compared with some well‐known indicators. The notion of grammar families as a compact representation to generate a rich class of features is exploited, and implementation issues are discussed in detail. The proposed methodology is tested on closing price data of major stock market indices, and the forecasting performance is compared with some standard techniques. A comparison with the conventional approach using standard technical indicators and naive approaches is shown.</abstract><cop>Hoboken</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/coin.12083</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0824-7935
ispartof Computational intelligence, 2017-05, Vol.33 (2), p.241-261
issn 0824-7935
1467-8640
language eng
recordid cdi_proquest_journals_1897309663
source Wiley Online Library Journals Frontfile Complete; EBSCOhost Business Source Complete
subjects Artificial intelligence
context‐free grammar
Economic forecasting
feature generation
financial time series
Grammars
Indicators
Machine learning
Markets
Neural networks
Raw materials
Time series
time‐series forecasting
title Forecasting Financial Time Series with Grammar‐Guided Feature Generation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T11%3A42%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Forecasting%20Financial%20Time%20Series%20with%20Grammar%E2%80%90Guided%20Feature%20Generation&rft.jtitle=Computational%20intelligence&rft.au=Silva,%20Anthony%20Mihirana&rft.date=2017-05&rft.volume=33&rft.issue=2&rft.spage=241&rft.epage=261&rft.pages=241-261&rft.issn=0824-7935&rft.eissn=1467-8640&rft_id=info:doi/10.1111/coin.12083&rft_dat=%3Cproquest_cross%3E1897309663%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1897309663&rft_id=info:pmid/&rfr_iscdi=true